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Abstract—Presto is an open source distributed query engine
that supports much of the SQL analytics workload at Facebook.
Presto is designed to be adaptive, flexible, and extensible. It
supports a wide variety of use cases with diverse characteristics.
These range from user-facing reporting applications with sub-
second latency requirements to multi-hour ETL jobs that aggre-
gate or join terabytes of data. Presto’s Connector API allows
plugins to provide a high performance I/O interface to dozens
of data sources, including Hadoop data warehouses, RDBMSs,
NoSQL systems, and stream processing systems. In this paper, we
outline a selection of use cases that Presto supports at Facebook.
We then describe its architecture and implementation, and call
out features and performance optimizations that enable it to
support these use cases. Finally, we present performance results
that demonstrate the impact of our main design decisions.
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I. INTRODUCTION

The ability to quickly and easily extract insights from large
amounts of data is increasingly important to technology-
enabled organizations. As it becomes cheaper to collect and
store vast amounts of data, it is important that tools to query
this data become faster, easier to use, and more flexible. Using
a popular query language like SQL can make data analytics
accessible to more people within an organization. However,
ease-of-use is compromised when organizations are forced
to deploy multiple incompatible SQL-like systems to solve
different classes of analytics problems.

Presto is an open-source distributed SQL query engine that
has run in production at Facebook since 2013 and is used today
by several large companies, including Uber, Netflix, Airbnb,
Bloomberg, and LinkedIn. Organizations such as Qubole,
Treasure Data, and Starburst Data have commercial offerings
based on Presto. The Amazon Athena1 interactive querying
service is built on Presto. With over a hundred contributors
on GitHub, Presto has a strong open source community.

Presto is designed to be adaptive, flexible, and extensible.
It provides an ANSI SQL interface to query data stored in
Hadoop environments, open-source and proprietary RDBMSs,
NoSQL systems, and stream processing systems such as
Kafka. A ‘Generic RPC’2 connector makes adding a SQL
interface to proprietary systems as easy as implementing a
half dozen RPC endpoints. Presto exposes an open HTTP
API, ships with JDBC support, and is compatible with sev-
eral industry-standard business intelligence (BI) and query
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2Using Thrift, an interface definition language and RPC protocol used for

defining and creating services in multiple languages.

authoring tools. The built-in Hive connector can natively read
from and write to distributed file systems such as HDFS and
Amazon S3; and supports several popular open-source file
formats including ORC, Parquet, and Avro.

As of late 2018, Presto is responsible for supporting much
of the SQL analytic workload at Facebook, including interac-
tive/BI queries and long-running batch extract-transform-load
(ETL) jobs. In addition, Presto powers several end-user facing
analytics tools, serves high performance dashboards, provides
a SQL interface to multiple internal NoSQL systems, and
supports Facebook’s A/B testing infrastructure. In aggregate,
Presto processes hundreds of petabytes of data and quadrillions
of rows per day at Facebook.
Presto has several notable characteristics:
• It is an adaptive multi-tenant system capable of concur-
rently running hundreds of memory, I/O, and CPU-intensive
queries, and scaling to thousands of worker nodes while
efficiently utilizing cluster resources.

• Its extensible, federated design allows administrators to
set up clusters that can process data from many different
data sources even within a single query. This reduces the
complexity of integrating multiple systems.

• It is flexible, and can be configured to support a vast variety
of use cases with very different constraints and performance
characteristics.

• It is built for high performance, with several key related
features and optimizations, including code-generation. Mul-
tiple running queries share a single long-lived Java Virtual
Machine (JVM) process on worker nodes, which reduces
response time, but requires integrated scheduling, resource
management and isolation.

The primary contribution of this paper is to describe the design
of the Presto engine, discussing the specific optimizations and
trade-offs required to achieve the characteristics we described
above. The secondary contributions are performance results for
some key design decisions and optimizations, and a description
of lessons learned while developing and maintaining Presto.

Presto was originally developed to enable interactive query-
ing over the Facebook data warehouse. It evolved over time to
support several different use cases, a few of which we describe
in Section II. Rather than studying this evolution, we describe
both the engine and use cases as they exist today, and call
out main features and functionality as they relate to these use
cases. The rest of the paper is structured as follows. In Section
III, we provide an architectural overview, and then dive into
system design in Section IV. We then describe some important



performance optimizations in Section V, present performance
results in Section VI, and engineering lessons we learned
while developing Presto in Section VII. Finally, we outline
key related work in Section VIII, and conclude in Section
IX. Presto is under active development, and significant new
functionality is added frequently. In this paper, we describe
Presto as of version 0.211, released in September 2018.

II. USE CASES

At Facebook, we operate numerous Presto clusters (with sizes
up to ∼1000 nodes) and support several different use cases.
In this section we select four diverse use cases with large
deployments and describe their requirements.

A. Interactive Analytics

Facebook operates a massive multi-tenant data warehouse
as an internal service, where several business functions and
organizational units share a smaller set of managed clusters.
Data is stored in a distributed filesystem and metadata is stored
in a separate service. These systems have APIs similar to that
of HDFS and the Hive metastore service, respectively. We refer
to this as the ‘Facebook data warehouse’, and use a variant of
the Presto ‘Hive’ connector to read from and write to it.

Facebook engineers and data scientists routinely examine
small amounts of data (∼50GB-3TB compressed), test hy-
potheses, and build visualizations or dashboards. Users often
rely on query authoring tools, BI tools, or Jupyter notebooks.
Individual clusters are required to support 50-100 concurrent
running queries with diverse query shapes, and return results
within seconds or minutes. Users are highly sensitive to end-
to-end wall clock time, and may not have a good intuition
of query resource requirements. While performing exploratory
analysis, users may not require that the entire result set be
returned. Queries are often canceled after initial results are
returned, or use LIMIT clauses to restrict the amount of result
data the system should produce.

B. Batch ETL

The data warehouse we described above is populated with
fresh data at regular intervals using ETL queries. Queries are
scheduled by a workflow management system that determines
dependencies between tasks and schedules them accordingly.
Presto supports users migrating from legacy batch processing
systems, and ETL queries now make up a large fraction of
the Presto workload at Facebook by CPU. These queries
are typically written and optimized by data engineers. They
tend to be much more resource intensive than queries in the
Interactive Analytics use case, and often involve performing
CPU-heavy transformations and memory-intensive (multiple
TBs of distributed memory) aggregations or joins with other
large tables. Query latency is somewhat less important than
resource efficiency and overall cluster throughput.

C. A/B Testing

A/B testing is used at Facebook to evaluate the impact of
product changes through statistical hypothesis testing. Much of

the A/B test infrastructure at Facebook is built on Presto. Users
expect test results be available in hours (rather than days) and
that the data be complete and accurate. It is also important for
users to be able to perform arbitrary slice and dice on their
results at interactive latency (∼5-30s) to gain deeper insights.
It is difficult to satisfy this requirement by pre-aggregating
data, so results must be computed on the fly. Producing results
requires joining multiple large data sets, which include user,
device, test, and event attributes. Query shapes are restricted
to a small set since queries are programmatically generated.

D. Developer/Advertiser Analytics

Several custom reporting tools for external developers and
advertisers are built on Presto. One example deployment of
this use case is Facebook Analytics3, which offers advanced
analytics tools to developers that build applications which use
the Facebook platform. These deployments typically expose
a web interface that can generate a restricted set of query
shapes. Data volumes are large in aggregate, but queries
are highly selective, as users can only access data for their
own applications or ads. Most query shapes contain joins,
aggregations or window functions. Data ingestion latency is
in the order of minutes. There are very strict query latency
requirements (∼50ms-5s) as the tooling is meant to be inter-
active. Clusters must have 99.999% availability and support
hundreds of concurrent queries given the volume of users.

III. ARCHITECTURE OVERVIEW

A Presto cluster consists of a single coordinator node and
one or more worker nodes. The coordinator is responsible
for admitting, parsing, planning and optimizing queries as
well as query orchestration. Worker nodes are responsible for
query processing. Figure 1 shows a simplified view of Presto
architecture.
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Fig. 1. Presto Architecture

The client sends an HTTP request containing a SQL state-
ment to the coordinator. The coordinator processes the request

3https://analytics.facebook.com



by evaluating queue policies, parsing and analyzing the SQL
text, creating and optimizing distributed execution plan.

The coordinator distributes this plan to workers, starts exe-
cution of tasks and then begins to enumerate splits, which are
opaque handles to an addressable chunk of data in an external
storage system. Splits are assigned to the tasks responsible for
reading this data.

Worker nodes running these tasks process these splits by
fetching data from external systems, or process intermediate
results produced by other workers. Workers use co-operative
multi-tasking to process tasks from many queries concurrently.
Execution is pipelined as much as possible, and data flows
between tasks as it becomes available. For certain query
shapes, Presto is capable of returning results before all the
data is processed. Intermediate data and state is stored in-
memory whenever possible. When shuffling data between
nodes, buffering is tuned for minimal latency.

Presto is designed to be extensible; and provides a versa-
tile plugin interface. Plugins can provide custom data types,
functions, access control implementations, event consumers,
queuing policies, and configuration properties. More impor-
tantly, plugins also provide connectors, which enable Presto to
communicate with external data stores through the Connector
API, which is composed of four parts: the Metadata API, Data
Location API, Data Source API, and Data Sink API. These
APIs are designed to allow performant implementations of
connectors within the environment of a physically distributed
execution engine. Developers have contributed over a dozen
connectors to the main Presto repository, and we are aware of
several proprietary connectors.

IV. SYSTEM DESIGN

In this section we describe some of the key design decisions
and features of the Presto engine. We describe the SQL dialect
that Presto supports, then follow the query lifecycle all the way
from client to distributed execution. We also describe some
of the resource management mechanisms that enable multi-
tenancy in Presto. Finally, we briefly discuss fault tolerance.

A. SQL Dialect
Presto closely follows the ANSI SQL specification [2]. While
the engine does not implement every feature described, im-
plemented features conform to the specification as far as
possible. We have made a few carefully chosen extensions to
the language to improve usability. For example, it is difficult
to operate on complex data types, such as maps and arrays,
in ANSI SQL. To simplify operating on these common data
types, Presto syntax supports anonymous functions (lambda
expressions) and built-in higher-order functions (e.g., trans-
form, filter, reduce).

B. Client Interfaces, Parsing, and Planning
1) Client Interfaces: The Presto coordinator primarily ex-

poses a RESTful HTTP interface to clients, and ships with
a first-class command line interface. Presto also ships with a
JDBC client, which enables compatibility with a wide variety
of BI tools, including Tableau and Microstrategy.

2) Parsing: Presto uses an ANTLR-based parser to convert
SQL statements into a syntax tree. The analyzer uses this
tree to determine types and coercions, resolve functions and
scopes, and extracts logical components, such as subqueries,
aggregations, and window functions.

3) Logical Planning: The logical planner uses the syntax
tree and analysis information to generate an intermediate
representation (IR) encoded in the form of a tree of plan nodes.
Each node represents a physical or logical operation, and the
children of a plan node are its inputs. The planner produces
nodes that are purely logical, i.e. they do not contain any
information about how the plan should be executed. Consider
a simple query:

SELECT
orders.orderkey, SUM(tax)

FROM orders
LEFT JOIN lineitem

ON orders.orderkey = lineitem.orderkey
WHERE discount = 0
GROUP BY orders.orderkey

The logical plan for this query is outlined in Figure 2.

Aggregate [SUM(tax)]

LeftJoin [ON orderkey]

Scan [orders]Filter [discount=0]

Scan [lineitem]

Fig. 2. Logical Plan

C. Query Optimization

The plan optimizer transforms the logical plan into a more
physical structure that represents an efficient execution strategy
for the query. The process works by evaluating a set of
transformation rules greedily until a fixed point is reached.
Each rule has a pattern that can match a sub-tree of the
query plan and determines whether the transformation should
be applied. The result is a logically equivalent sub-plan that
replaces the target of the match. Presto contains several rules,
including well-known optimizations such as predicate and
limit pushdown, column pruning, and decorrelation.

We are in the process of enhancing the optimizer to perform
a more comprehensive exploration of the search space using
a cost-based evaluation of plans based on the techniques
introduced by the Cascades framework [13]. However, Presto
already supports two cost-based optimizations that take table
and column statistics into account - join strategy selection and
join re-ordering. We will discuss only a few features of the
optimizer; a detailed treatment is out of the scope of this paper.

1) Data Layouts: The optimizer can take advantage of
the physical layout of the data when it is provided by the
connector Data Layout API. Connectors report locations and
other data properties such as partitioning, sorting, grouping,



and indices. Connectors can return multiple layouts for a single
table, each with different properties, and the optimizer can
select the most efficient layout for the query [15] [19]. This
functionality is used by administrators operating clusters for
the Developer/Advertiser Analytics use case; it enables them to
optimize new query shapes simply by adding physical layouts.
We will see some of the ways the engine can take advantage
of these properties in the subsequent sections.

2) Predicate Pushdown: The optimizer can work with con-
nectors to decide when pushing range and equality predicates
down through the connector improves filtering efficiency.

For example, the Developer/Advertiser Analytics use case
leverages a proprietary connector built on top of sharded
MySQL. The connector divides data into shards that are
stored in individual MySQL instances, and can push range
or point predicates all the way down to individual shards,
ensuring that only matching data is ever read from MySQL.
If multiple layouts are present, the engine selects a layout that
is indexed on the predicate columns. Efficient index based
filtering is very important for the highly selective filters used
in the Developer/Advertiser Analytics tools. For the Interactive
Analytics and Batch ETL use cases, Presto leverages the
partition pruning and file-format features (Section V-C) in the
Hive connector to improve performance in a similar fashion.

3) Inter-node Parallelism: Part of the optimization process
involves identifying parts of the plan that can be executed in
parallel across workers. These parts are known as ‘stages’,
and every stage is distributed to one or more tasks, each of
which execute the same computation on different sets of input
data. The engine inserts buffered in-memory data transfers
(shuffles) between stages to enable data exchange. Shuffles add
latency, use up buffer memory, and have high CPU overhead.
Therefore, the optimizer must reason carefully about the total
number of shuffles introduced into the plan. Figure 3 shows
how a naı̈ve implementation would partition a plan into stages
and connect them using shuffles.

Data Layout Properties: The physical data layout can be
used by the optimizer to minimize the number of shuffles in
the plan. This is very useful in the A/B Testing use case,
where almost every query requires a large join to produce
experiment details or population information. The engine takes
advantage of the fact that both tables participating in the join
are partitioned on the same column, and uses a co-located join
strategy to eliminate a resource-intensive shuffle.

If connectors expose a data layout in which join columns are
marked as indices, the optimizer is able to determine if using
an index nested loop join would be an appropriate strategy.
This can make it extremely efficient to operate on normalized
data stored in a data warehouse by joining against production
data stores (key-value or otherwise). This is a commonly used
feature in the Interactive Analytics use case.

Node Properties: Like connectors, nodes in the plan tree
can express properties of their outputs (i.e. the partitioning,
sorting, bucketing, and grouping characteristics of the data)
[24]. These nodes have the ability to also express required
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Fig. 3. Distributed plan for Figure 2. The connector has not exposed any data
layout properties, and shuffle reduction optimizations have not been applied.
Four shuffles are required to execute the query.

and preferred properties, which are taken into account when
introducing shuffles. Redundant shuffles are simply elided, but
in other cases the properties of the shuffle can be changed to
reduce the number of shuffles required. Presto greedily selects
partitioning that will satisfy as many required properties as
possible to reduce shuffles. This means that the optimizer
may choose to partition on fewer columns, which in some
cases can result in greater partition skew. As an example,
this optimization applied to the plan in Figure 3 causes it to
collapse to a single data processing stage.

4) Intra-node Parallelism: The optimizer uses a similar
mechanism to identify sections within plan stages that can
benefit from being parallelized across threads on a single
node. Parallelizing within a node is much more efficient than
inter-node parallelism, since there is little latency overhead,
and state (e.g., hash-tables and dictionaries) can be efficiently
shared between threads. Adding intra-node parallelism can
lead to significant speedups, especially for query shapes where
concurrency constrains throughput at downstream stages:
• The Interactive Analytics involves running many short one-
off queries, and users do not typically spend time trying
to optimize these. As a result, partition skew is common,
either due to inherent properties of the data, or as a result
of common query patterns (e.g., grouping by user country
while also filtering to a small set of countries). This typically
manifests as a large volume of data being hash-partitioned
on to a small number of nodes.

• Batch ETL jobs often transform large data sets with little or
no filtering. In these scenarios, the smaller number of nodes
involved in the higher levels of the tree may be insufficient
to quickly process the volume of data generated by the leaf
stage. Task scheduling is discussed in Section IV-D2.

In both of these scenarios, multiple threads per worker per-



forming the computation can alleviate this concurrency bot-
tleneck to some degree. The engine can run a single sequence
of operators (or pipeline) in multiple threads. Figure 4 shows
how the optimizer is able to parallelize one section of a join.
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Fig. 4. Materialized and optimized plan corresponding to Figure 3, showing
tasks, pipelines, and operators. Pipeline 1 and 2 are parallelized across multiple
threads to speed up the build side of a hash-join.

D. Scheduling

The coordinator distributes plan stages to workers in the
form of executable tasks, which can be thought of as single
processing units. Then, the coordinator links tasks in one stage
to tasks in other stages, forming a tree of processors linked to
one another by shuffles. Data streams from stage to stage as
soon as it is available.

A task may have multiple pipelines within it. A pipeline
consists of a chain of operators, each of which performs a
single, well-defined computation on the data. For example, a
task performing a hash-join must contain at least two pipelines;
one to build the hash table (build pipeline), and one to stream
data from the probe side and perform the join (probe pipeline).
When the optimizer determines that part of a pipeline would
benefit from increased local parallelism, it can split up the
pipeline and parallelize that part independently. Figure 4 shows
how the build pipeline has been split up into two pipelines, one
to scan data, and the other to build partitions of the hash table.
Pipelines are joined together by a local in-memory shuffle.

To execute a query, the engine makes two sets of scheduling
decisions. The first determines the order in which stages are
scheduled, and the second determines how many tasks should
be scheduled, and which nodes they should be placed on.

1) Stage Scheduling: Presto supports two scheduling poli-
cies for stages: all-at-once and phased. All-at-once mini-
mizes wall clock time by scheduling all stages of execution
concurrently; data is processed as soon as it is available.
This scheduling strategy benefits latency-sensitive use cases
such as Interactive Analytics, Developer/Advertiser Analytics,
and A/B Testing. Phased execution identifies all the strongly

connected components of the directed data flow graph that
must be started at the same time to avoid deadlocks and
executes those in topological order. For example, if a hash-join
is executed in phased mode, the tasks to schedule streaming
of the left side will not be scheduled until the hash table is
built. This greatly improves memory efficiency for the Batch
Analytics use case.

When the scheduler determines that a stage should be
scheduled according to the policy, it begins to assign tasks
for that stage to worker nodes.

2) Task Scheduling: The task scheduler examines the plan
tree and classifies stages into leaf and intermediate stages.
Leaf stages read data from connectors; while intermediate
stages only process intermediate results from other stages.

Leaf Stages: For leaf stages, the task scheduler takes into
account the constraints imposed by the network and connectors
when assigning tasks to worker nodes. For example, shared-
nothing deployments require that workers be co-located with
storage nodes. The scheduler uses the Connector Data Layout
API to decide task placement under these circumstances. The
A/B Testing use case requires predictable high-throughput,
low-latency data reads, which are satisfied by the Raptor
connector. Raptor is a storage engine optimized for Presto
with a shared-nothing architecture that stores ORC files on
flash disks and metadata in MySQL.

Profiling shows that a majority of CPU time across our
production clusters is spent decompressing, decoding, filtering
and applying transformations to data read from connectors.
This work is highly parallelizable, and running these stages
on as many nodes as possible usually yields the shortest wall
time. Therefore, if there are no constraints, and the data can be
divided up into enough splits, a leaf stage task is scheduled
on every worker node in the cluster. For the Facebook data
warehouse deployments that run in shared-storage mode (i.e.
all data is remote), every node in a cluster is usually involved
in processing the leaf stage. This execution strategy can be
network intensive.

The scheduler can also reason about network topology to
optimize reads using a plugin-provided hierarchy. Network-
constrained deployments at Facebook can use this mechanism
to express to the engine a preference for rack-local reads over
rack-remote reads.

Intermediate Stages: Tasks for intermediate stages can be
placed on any worker node. However, the engine still needs
to decide how many tasks should be scheduled for each stage.
This decision is based on the connector configuration, the
properties of the plan, the required data layout, and other
deployment configuration. In some cases, the engine can
dynamically change the number of tasks during execution.
Section IV-E3 describes one such scenario.

3) Split Scheduling: When a task in a leaf stage begins
execution on a worker node, the node makes itself available
to receive one or more splits (described in Section III). The
information that a split contains varies by connector. When
reading from a distributed file system, a split might consist of



a file path and offsets to a region of the file. For the Redis
key-value store, a split consists of table information, a key and
value format, and a list of hosts to query, among other things.

Every task in a leaf stage must be assigned one or more
splits to become eligible to run. Tasks in intermediate stages
are always eligible to run, and finish only when they are
aborted or all their upstream tasks are completed.

Split Assignment: As tasks are set up on worker nodes, the
coordinator starts to assign splits to these tasks. Presto asks
connectors to enumerate small batches of splits, and assigns
them to tasks lazily. This is a an important feature of Presto
and provides several benefits:
• Decouples query response time from the time it takes

the connector to enumerate a large number of splits. For
example, it can take minutes for the Hive connector to
enumerate partitions and list files in each partition directory.

• Queries that can start producing results without processing
all the data (e.g., simply selecting data with a filter) are
frequently canceled quickly or complete early when a
LIMIT clause is satisfied. In the Interactive Analytics use
case, it is common for queries to finish before all the splits
have even been enumerated.

• Workers maintain a queue of splits they are assigned to
process. The coordinator simply assigns new splits to tasks
with the shortest queue. Keeping these queues small allows
the system to adapt to variance in CPU cost of processing
different splits and performance differences among workers.

• Allows queries to execute without having to hold all
their metadata in memory. This is important for the Hive
connector, where queries may access millions of splits and
can easily consume all available coordinator memory.
These features are particularly useful for the Interactive An-

alytics and Batch ETL use cases, which run on the Facebook
Hive-compatible data warehouse. It’s worth noting that lazy
split enumeration can make it difficult to accurately estimate
and report query progress.

E. Query Execution

1) Local Data Flow: Once a split is assigned to a thread, it
is executed by the driver loop. The Presto driver loop is more
complex than the popular Volcano (pull) model of recursive
iterators [1], but provides important functionality. It is much
more amenable to cooperative multi-tasking, since operators
can be quickly brought to a known state before yielding the
thread instead of blocking indefinitely. In addition, the driver
can maximize work performed in every quanta by moving data
between operators that can make progress without additional
input (e.g., resuming computation of resource-intensive or
explosive transformations). Every iteration of the loop moves
data between all pairs of operators that can make progress.

The unit of data that the driver loop operates on is called
a page, which is a columnar encoding of a sequence of
rows. The Connector Data Source API returns pages when
it is passed a split, and operators typically consume input
pages, perform computation, and produce output pages. Figure

5 shows the structure of a page in memory. The driver
loop continuously moves pages between operators until the
scheduling quanta is complete (discussed in Section IV-F1),
or until operators cannot make progress.

2) Shuffles: Presto is designed to minimize end-to-end
latency while maximizing resource utilization, and our inter-
node data flow mechanism reflects this design choice. Presto
uses in-memory buffered shuffles over HTTP to exchange in-
termediate results. Data produced by tasks is stored in buffers
for consumption by other workers. Workers request intermedi-
ate results from other workers using HTTP long-polling. The
server retains data until the client requests the next segment
using a token sent in the previous response. This makes the
acknowledgement implicit in the transfer protocol. The long-
polling mechanism minimizes response time, especially when
transferring small amounts of data. This mechanism offers
much lower latency than other systems that persist shuffle data
to disk [4], [21] and allows Presto to support latency-sensitive
use cases such as Developer/Advertiser Analytics.

The engine tunes parallelism to maintain target utilization
rates for output and input buffers. Full output buffers cause
split execution to stall and use up valuable memory, while un-
derutilized input buffers add unnecessary processing overhead.

The engine continuously monitors the output buffer utiliza-
tion. When utilization is consistently high, it lowers effective
concurrency by reducing the number of splits eligible to be
run. This has the effect of increasing fairness in sharing of net-
work resources. It is also an important efficiency optimization
when dealing with clients (either end-users or other workers)
that are unable to consume data at the rate it is being produced.
Without this functionality, slow clients running complex multi-
stage queries could hold tens of gigabytes worth of buffer
memory for long periods of time. This scenario is common
even when a small amount of result data (∼10-50MB) is
being downloaded by a BI or query authoring tool over slow
connections in the Interactive Analytics use case.

On the receiver side, the engine monitors the moving aver-
age of data transferred per request to compute a target HTTP
request concurrency that keeps the input buffers populated
while not exceeding their capacity. This backpressure causes
upstream tasks to slow down as their buffers fill up.

3) Writes: ETL jobs generally produce data that must be
written to other tables. An important driver of write perfor-
mance in a remote-storage environment is the concurrency
with which the write is performed (i.e. the aggregate number
of threads writing data through the Connector Data Sink API).

Consider the example of a Hive connector configured to
use Amazon S3 for storage. Every concurrent write to S3
creates a new file, and hundreds of writes of a small aggregate
amount of data are likely to create small files. Unless these
small units of data can be later coalesced, they are likely to
create unacceptably high overheads while reading (many slow
metadata operations, and latency-bound read performance).
However, using too little concurrency can decrease aggre-
gate write throughput to unacceptable levels. Presto takes
an adaptive approach again, dynamically increasing writer



concurrency by adding tasks on more worker nodes when the
engine determines that the stage producing data for the write
exceeds a buffer utilization threshold (and a configurable per-
writer data written threshold). This is an important efficiency
optimization for the write-heavy Batch ETL use case.

F. Resource Management

One of the key features that makes Presto a good fit for multi-
tenant deployments is that it contains a fully-integrated fine-
grained resource management system. A single cluster can
execute hundreds of queries concurrently, and maximize the
use of CPU, IO, and memory resources.

1) CPU Scheduling: Presto primarily optimizes for overall
cluster throughput, i.e. aggregate CPU utilized for processing
data. The local (node-level) scheduler additionally optimizes
for low turnaround time for computationally inexpensive
queries, and the fair sharing of CPU resources amongst queries
with similar CPU requirements. A task’s resource usage is
the aggregate thread CPU time given to each of its splits. To
minimize coordination overhead, Presto tracks CPU resource
usage at the task level and makes scheduling decisions locally.

Presto schedules many concurrent tasks on every worker
node to achieve multi-tenancy and uses a cooperative multi-
tasking model. Any given split is only allowed to run on a
thread for a maximum quanta of one second, after which
it must relinquish the thread and return to the queue. When
output buffers are full (downstream stages cannot consume
data fast enough), input buffers are empty (upstream stages
cannot produce data fast enough), or the system is out of
memory, the local scheduler simply switches to processing
another task even before the quanta is complete. This frees up
threads for runnable splits, helps Presto maximize CPU usage,
and is highly adaptive to different query shapes. All of our use
cases benefit from this granular resource efficiency.

When a split relinquishes a thread, the engine needs to
decide which task (associated with one or more splits) to run
next. Rather than predict the resources required to complete
a new query ahead of time, Presto simply uses a task’s
aggregate CPU time to classify it into the five levels of a
multi-level feedback queue [8]. As tasks accumulate more
CPU time, they move to higher levels. Each level is assigned
a configurable fraction of the available CPU time. In practice,
it is challenging to accomplish fair cooperative multi-tasking
with arbitrary workloads. The I/O and CPU characteristics
for splits vary wildly (sometimes even within the same task),
and complex functions (e.g., regular expressions) can consume
excessive amounts of thread time relative to other splits. Some
connectors do not provide asynchronous APIs, and worker
threads can be held for several minutes.

The scheduler must be adaptive when dealing with these
constraints. The system provides a low-cost yield signal, so
that long running computations can be stopped within an oper-
ator. If an operator exceeds the quanta, the scheduler ‘charges’
actual thread time to the task, and temporarily reduces future
execution occurrences. This adaptive behavior allows us to

handle the diversity of query shapes in the Interactive Ana-
lytics and Batch ETL use cases, where Presto gives higher
priority to queries with lowest resource consumption. This
choice reflects the understanding that users expect inexpensive
queries to complete quickly, and are less concerned about
the turnaround time of larger, computationally-expensive jobs.
Running more queries concurrently, even at the expense of
more context-switching, results in lower aggregate queue time,
since shorter queries exit the system quickly.

2) Memory Management: Memory poses one of the main
resource management challenges in a multi-tenant system like
Presto. In this section we describe the mechanism by which
the engine controls memory allocations across the cluster.

Memory Pools: All non-trivial memory allocations in Presto
must be classified as user or system memory, and reserve
memory in the corresponding memory pool. User memory
is memory usage that is possible for users to reason about
given only basic knowledge of the system or input data (e.g.,
the memory usage of an aggregation is proportional to its
cardinality). On the other hand, system memory is memory
usage that is largely a byproduct of implementation decisions
(e.g., shuffle buffers) and may be uncorrelated with query
shape and input data volume.

The engine imposes separate restrictions on user and total
(user + system) memory; queries that exceed a global limit
(aggregated across workers) or per-node limit are killed. When
a node runs out of memory, query memory reservations are
blocked by halting processing for tasks. The total memory
limit is usually set to be much higher than the user limit, and
only a few queries exceed the total limit in production.

The per-node and global user memory limits on queries are
usually distinct; this enables a maximum level of permissible
usage skew. Consider a 500 node cluster with 100GB of query
memory available per node and a requirement that individual
queries can use up to 5TB globally. In this case, 10 queries
can concurrently allocate up to that amount of total memory.
However, if we want to allow for a 2:1 skew (i.e. one partition
of the query consumes 2x the median memory), the per-node
query memory limit would have to be set to 20GB. This means
that only 5 queries are guaranteed to be able to run without
exhausting the available node memory.

It is important that we be able to run more than 5 queries
concurrently on a 500-node Interactive Analytics or Batch ETL
cluster. Given that queries in these clusters vary wildly in their
memory characteristics (skew, allocation rate, and allocation
temporal locality), it is unlikely that all five queries allocate
up to their limit on the same worker node at any given point in
time. Therefore, it is generally safe to overcommit the memory
of the cluster as long as mechanisms exist to keep the cluster
healthy when nodes are low on memory. There are two such
mechanisms in Presto – spilling, and reserved pools.

Spilling: When a node runs out of memory, the engine invokes
the memory revocation procedure on eligible tasks in ascend-
ing order of their execution time, and stops when enough
memory is available to satisfy the last request. Revocation is



processed by spilling state to disk. Presto supports spilling for
hash joins and aggregations. However, we do not configure
any of the Facebook deployments to spill. Cluster sizes are
typically large enough to support several TBs of distributed
memory, users appreciate the predictable latency of fully in-
memory execution, and local disks would increase hardware
costs (especially in Facebook’s shared-storage deployments).

Reserved Pool: If a node runs out of memory and the cluster
is not configured to spill, or there is no revocable memory
remaining, the reserved memory mechanism is used to unblock
the cluster. The query memory pool on every node is further
sub divided into two pools: general and reserved. When the
general pool is exhausted on a worker node, the query using
the most memory on that worker gets ‘promoted’ to the
reserved pool on all worker nodes. In this state, the memory
allocated to that query is counted towards the reserved pool
rather than the general pool. To prevent deadlock (where
different workers stall different queries) only a single query
can enter the reserved pool across the entire cluster. If the
general pool on a node is exhausted while the reserved
pool is occupied, all memory requests from other tasks on
that node are stalled. The query runs in the reserved pool
until it completes, at which point the cluster unblocks all
outstanding requests for memory. This is somewhat wasteful,
as the reserved pool on every node must be sized to fit queries
running up against the local memory limits. Clusters can be
configured to instead kill the query that unblocks most nodes.

G. Fault Tolerance
Presto is able to recover from many transient errors using
low-level retries. However, as of late 2018, Presto does not
have any meaningful built-in fault tolerance for coordinator
or worker node crash failures. Coordinator failures cause the
cluster to become unavailable, and a worker node crash failure
causes all queries running on that node to fail. Presto relies
on clients to automatically retry failed queries.

In production at Facebook, we use external orchestration
mechanisms to run clusters in different availability modes
depending on the use case. The Interactive Analytics and Batch
ETL use cases run standby coordinators, while A/B Testing
and Developer/Advertiser Analytics run multiple active clus-
ters. External monitoring systems identify nodes that cause an
unusual number of failures and remove them from clusters,
and nodes that are remediated automatically re-join the cluster.
Each of these mechanisms reduce the duration of unavailability
to varying degrees, but cannot hide failures entirely.

Standard checkpointing or partial-recovery techniques are
computationally expensive, and difficult to implement in a sys-
tem designed to stream results back to clients as soon as they
are available. Replication-based fault tolerance mechanisms
[6] also consume significant resources. Given the cost, the
expected value of such techniques is unclear, especially when
taking into account the node mean-time-to-failure, cluster sizes
of ∼1000 nodes and telemetry data showing that most queries
complete within a few hours, including Batch ETL. Other
researchers have come to similar conclusions [17].

However, we are actively working on improved fault tol-
erance for long running queries. We are evaluating adding
optional checkpointing and limiting restarts to sub-trees of a
plan that cannot be run in a pipelined fashion.

V. QUERY PROCESSING OPTIMIZATIONS

In this section, we describe a few important query processing
optimizations that benefit most use cases.

A. Working with the JVM

Presto is implemented in Java and runs on the Hotspot
Java Virtual Machine (JVM). Extracting the best possible
performance out of the implementation requires playing to
the strengths and limitations of the underlying platform.
Performance-sensitive code such as data compression or
checksum algorithms can benefit from specific optimizations
or CPU instructions. While there is no application-level mech-
anism to control how the JVM Just-In-Time (JIT) compiler
generates machine code, it is possible to structure the code
so that it can take advantage of optimizations provided by
the JIT compiler, such as method inlining, loop unrolling, and
intrinsics. We are exploring the use of Graal [22] in scenarios
where the JVM is unable to generate optimal machine code,
such as 128-bit math operations.

The choice of garbage collection (GC) algorithm can have
dramatic effects on application performance and can even
influence application implementation choices. Presto uses the
G1 collector, which deals poorly with objects larger than a
certain size. To limit the number of these objects, Presto avoids
allocating objects or buffers bigger than the ‘humongous’
threshold and uses segmented arrays if necessary. Large and
highly linked object graphs can also be problematic due to
maintenance of remembered set structures in G1 [10]. Data
structures in the critical path of query execution are imple-
mented over flat memory arrays to reduce reference and object
counts and make the job of the GC easier. For example, the
HISTOGRAM aggregation stores the bucket keys and counts
for all groups in a set of flat arrays and hash tables instead of
maintaining independent objects for each histogram.

B. Code Generation

One of the main performance features of the engine is code
generation, which targets JVM bytecode. This takes two forms:

1) Expression Evaluation: The performance of a query en-
gine is determined in part by the speed at which it can evaluate
complex expressions. Presto contains an expression interpreter
that can evaluate arbitrarily complex expressions that we use
for tests, but is much too slow for production use evaluating
billions of rows. To speed this up, Presto generates bytecode
to natively deal with constants, function calls, references to
variables, and lazy or short-circuiting operations.

2) Targeting JIT Optimizer Heuristics: Presto generates
bytecode for several key operators and operator combinations.
The generator takes advantage of the engine’s superior knowl-
edge of the semantics of the computation to produce bytecode
that is more amenable to JIT optimization than that of a



generic processing loop. There are three main behaviors that
the generator targets:

• Since the engine switches between different splits from
distinct task pipelines every quanta (Section IV-F1), the JIT
would fail to optimize a common loop based implementa-
tion since the collected profiling information for the tight
processing loop would be polluted by other tasks or queries.

• Even within the processing loop for a single task pipeline,
the engine is aware of the types involved in each com-
putation and can generate unrolled loops over columns.
Eliminating target type variance in the loop body causes
the profiler to conclude that call sites are monomorphic,
allowing it to inline virtual methods.

• As the bytecode generated for every task is compiled into
a separate Java class, each can be profiled independently
by the JIT optimizer. In effect, the JIT optimizer further
adapts a custom program generated for the query to the data
actually processed. This profiling happens independently at
each task, which improves performance in environments
where each task processes a different partition of the data.
Furthermore, the performance profile can change over the
lifetime of the task as the data changes (e.g., time-series
data or logs), causing the generated code to be updated.

Generated bytecode also benefits from the second order ef-
fects of inlining. The JVM is able to broaden the scope of
optimizations, auto-vectorize larger parts of the computation,
and can take advantage of frequency-based basic block layout
to minimize branches. CPU branch prediction also becomes far
more effective [7]. Bytecode generation improves the engine’s
ability to store intermediate results in registers or caches rather
than in memory [16].

C. File Format Features

Scan operators invoke the Connector API with leaf split
information and receive columnar data in the form of Pages.
A page consists of a list of Blocks, each of which is a column
with a flat in-memory representation. Using flat memory data
structures is important for performance, especially for complex
types. Pointer chasing, unboxing, and virtual method calls add
significant overhead to tight loops.

Connectors such Hive and Raptor take advantage of specific
file format features where possible [20]. Presto ships with
custom readers for file formats that can efficiently skip data
sections by using statistics in file headers/footers (e.g., min-
max range headers and Bloom filters). The readers can convert
certain forms of compressed data directly into blocks, which
can be efficiently operated upon by the engine (Section V-E).

Figure 5 shows the layout of a page with compressed encod-
ing schemes for each column. Dictionary-encoded blocks are
very effective at compressing low-cardinality sections of data
and run-length encoded (RLE) blocks compress repeated data.
Several pages may share a dictionary, which greatly improves
memory efficiency. A column in an ORC file can use a single
dictionary for an entire ‘stripe’ (up to millions of rows).
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Fig. 5. Different block types within a page

D. Lazy Data Loading

Presto supports lazy materialization of data. This functionality
can leverage the columnar, compressed nature of file formats
such as ORC, Parquet, and RCFile. Connectors can generate
lazy blocks, which read, decompress, and decode data only
when cells are actually accessed. Given that a large fraction
of CPU time is spent decompressing and decoding and that it
is common for filters to be highly selective, this optimization
is highly effective when columns are infrequently accessed.
Tests on a sample of production workload from the Batch
ETL use case show that lazy loading reduces data fetched by
78%, cells loaded by 22% and total CPU time by 14%.

E. Operating on Compressed Data

Presto operates on compressed data (i.e. dictionary and run-
length-encoded blocks) sourced from the connector wherever
possible. Figure 5 shows how these blocks are structured
within a page. When a page processor evaluating a transfor-
mation or filter encounters a dictionary block, it processes all
of the values in the dictionary (or the single value in a run-
length-encoded block). This allows the engine to process the
entire dictionary in a fast unconditional loop. In some cases,
there are more values present in the dictionary than rows in
the block. In this scenario the page processor speculates that
the un-referenced values will be used in subsequent blocks.
The page processor keeps track of the number of real rows
produced and the size of the dictionary, which helps measure
the effectiveness of processing the dictionary as compared to
processing all the indices. If the number of rows is larger than
the size of the dictionary it is likely more efficient to process
the dictionary instead. When the page processor encounters a
new dictionary in the sequence of blocks, it uses this heuristic
to determine whether to continue speculating.

Presto also leverages dictionary block structure when build-
ing hash tables (e.g., joins or aggregations). As the indices
are processed, the operator records hash table locations for
every dictionary entry in an array. If the entry is repeated
for a subsequent index, it simply re-uses the location rather
than re-computing it. When successive blocks share the same



dictionary, the page processor retains the array to further
reduce the necessary computation.

Presto also produces intermediate compressed results during
execution. The join processor, for example, produces dictio-
nary or run-length-encoded blocks when it is more efficient to
do so. For a hash join, when the probe side of the join looks
up keys in the hash table, it records value indices into an
array rather than copying the actual data. The operator simply
produces a dictionary block where the index list is that array,
and the dictionary is a reference to the block in the hash table.

VI. PERFORMANCE

In this section, we present performance results that demon-
strate the impact of some of the main design decisions
described in this paper.

A. Adaptivity

Within Facebook, we run several different connectors in pro-
duction to allow users to process data stored in various internal
systems. Table 1 outlines the connectors and deployments that
are used to support the use cases outlined in Section II.

To demonstrate how Presto adapts to connector character-
istics, we compare runtimes for queries from the TPC-DS
benchmark at scale factor 30TB. Presto is capable of running
all TPC-DS queries, but for this experiment we select a low-
memory subset that does not require spilling.

We use Presto version 0.211 with internal variants of
the Hive/HDFS and Raptor connectors. Raptor is a shared-
nothing storage engine designed for Presto. It uses MySQL
for metadata and stores data on local flash disks in ORC
format. Raptor supports complex data organization (sorting,
bucketing, and temporal columns), but for this experiment
our data is randomly partitioned. The Hive connector uses an
internal service similar to the Hive Metastore and accesses files
encoded in an ORC-like format on a remote distributed filesys-
tem that is functionally similar to HDFS (i.e., a shared-storage
architecture). Performance characteristics of these connector
variants are similar to deployments on public cloud providers.

Every query is run with three settings on a 100-node test
cluster: (1) Data stored in Raptor with table shards randomly
distributed between nodes. (2) Data stored in Hive/HDFS
with no statistics. (3) Data stored in Hive/HDFS along with
table and column statistics. Presto’s optimizer can make cost-
based decisions about join order and join strategy when these
statistics are available. Every node is configured with a 28-
core IntelTM XeonTM E5-2680 v4 CPU running at 2.40GHz,
1.6TB of flash storage and 256GB of DDR4 RAM.

Figure 6 shows that Presto query runtime is greatly impacted
by the characteristics of connectors. With no change to the
query or cluster configuration, Presto is able to adapt to the
connector by taking advantage of its characteristics, including
throughput, latency, and the availability of statistics. It also
demonstrates how a single Presto cluster can serve both as
a traditional enterprise data warehouse (that data must be
ingested into) and also a query engine over a Hadoop data
warehouse. Data engineers at Facebook frequently use Presto

to perform exploratory analysis over the Hadoop warehouse
and then load aggregate results or frequently-accessed data
into Raptor for faster analysis and low-latency dashboards.
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Fig. 6. Query runtimes for a subset of TPC-DS
B. Flexibility
Presto’s flexibility is in large part due to its low-latency data
shuffle mechanism in conjunction with a Connector API that
supports performant processing of large volumes of data. Fig-
ure 7 shows a distribution of query runtimes from production
deployments of the selected use cases. We include only queries
that are successful and actually read data from storage. The
results demonstrate that Presto can be configured to effectively
serve web use cases with strict latency requirements (20-
100ms) as well as programmatically scheduled ETL jobs that
run for several hours.10/10/2018 raghavsethi WIP > Main | unidash
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C. Resource Management
Presto’s integrated fine-grained resource management system
allows it to quickly move CPU and memory resources between
queries to maximize resource efficiency in multi-tenant clus-
ters. Figure 8 shows a four hour trace of CPU and concurrency
metrics from one of our Interactive Analytics clusters. Even
as demand drops from a peak of 44 queries to a low of
8 queries, Presto continues to utilize an average of ∼90%
CPU across worker nodes. It is also worth noting that the
scheduler prioritizes new and inexpensive workloads as they
arrive to maintain responsiveness (Section IV-F1). It does
this by allocating large fractions of cluster-wide CPU to new
queries within milliseconds of them being admitted.

VII. ENGINEERING LESSONS

Presto has been developed and operated as a service by a small
team at Facebook since 2013. We observed that some engi-
neering philosophies had an outsize impact on Presto’s design
through feedback loops in a rapidly evolving environment:



Use Case Query Duration Workload Shape Cluster Size Concurrency Connector

Developer/Advertiser Analytics 50 ms - 5 sec Joins, aggregations and window
functions 10s of nodes 100s of queries Sharded MySQL

A/B Testing 1 sec - 25 sec Transform, filter and join billions
of rows 100s of nodes 10s of queries Raptor

Interactive Analytics 10 sec - 30 min Exploratory analysis on up to
∼3TB of data 100s of nodes 50-100 queries Hive/HDFS

Batch ETL 20 min - 5 hr Transform, filter, and join or
aggregate 1-100+TB of input data Upto 1000 nodes 10s of queries Hive/HDFS

TABLE I
PRESTO DEPLOYMENTS TO SUPPORT SELECTED USE CASES
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Fig. 8. Cluster avg. CPU utilization and concurrency over a 4-hour period

Adaptiveness over configurability: As a complex multi-
tenant query engine that executes arbitrary user defined com-
putation, Presto must be adaptive not only to different query
characteristics, but also combinations of characteristics. For
example, until Presto had end-to-end adaptive backpressure
(Section IV-E2), large amounts of memory and CPU was
utilized by a small number of jobs with slow clients, which
adversely affected latency-sensitive jobs that were running
concurrently. Without adaptiveness, it would be necessary to
narrowly partition workloads and tune configuration for each
workload independently. That approach would not scale to the
wide variety of query shapes that we see in production.

Effortless instrumentation: Presto exposes fine-grained per-
formance statistics at the query and node level. We maintain
our own libraries for efficient statistics collection which use
flat-memory for approximate data structures. It is important
to encourage observable system design and allow engineers to
instrument and understand the performance of their code. Our
libraries make adding statistics as easy as annotating a method.
As a consequence, the median Presto worker node exports
∼10,000 real-time performance counters, and we collect and
store operator level statistics (and merge up to task and stage
level) for every query. Our investment in telemetry tooling
allows us to be data-driven when optimizing the system.

Static configuration: Operational issues in a complex system
like Presto are difficult to root cause and mitigate quickly.
Configuration properties can affect system performance in
ways that are hard to reason about, and we prioritize being
able to understand the state of the cluster over the ability to
change configuration quickly. Unlike several other systems at
Facebook, Presto uses static rather than dynamic configura-
tion wherever possible. We developed our own configuration
library, which is designed to fail ‘loudly’ by crashing at startup
if there are any warnings; this includes unused, duplicated,

or conflicting properties. This model poses its own set of
challenges. However, with a large number of clusters and
configuration sets, it is more efficient to shift complexity from
operational investigations to the deployment process/tooling.
Vertical integration: Like other engineering teams, we design
custom libraries for components where performance and effi-
ciency are important. For example, custom file-format readers
allow us to use Presto-native data structures end-to-end and
avoid conversion overhead. However, we observed that the
ability to easily debug and control library behaviors is equally
important when operating a highly multi-threaded system that
performs arbitrary computation in a long-lived process.

Consider an example of a recent production issue. Presto
uses the Java built-in gzip library. While debugging a se-
quence of process crashes, we found that interactions between
glibc and the gzip library (which invokes native code)
caused memory fragmentation. For specific workload combi-
nations, this caused large native memory leaks. To address
this, we changed the way we use the library to influence the
right cache flushing behavior, but in other cases we have gone
as far as writing our own libraries for compression formats.

Custom libraries can also improve developer efficiency –
reducing the surface area for bugs by only implementing
necessary features, unifying configuration management, and
supporting detailed instrumentation to match our use case.

VIII. RELATED WORK

Systems that run SQL against large data sets have become
popular over the past decade. Each of these systems present a
unique set of tradeoffs. A comprehensive examination of the
space is outside the scope of this paper. Instead, we focus on
some of the more notable work in the area.

Apache Hive [21] was originally developed at Facebook
to provide a SQL-like interface over data stored in HDFS,
and executes queries by compiling them into MapReduce [9]
or Tez [18] jobs. Spark SQL [4] is a more modern system
built on the popular Spark engine [23], which addresses many
of the limitations of MapReduce. Spark SQL can run large
queries over multiple distributed data stores, and can operate
on intermediate results in memory. However, these systems do
not support end-to-end pipelining, and usually persist data to a
filesystem during inter-stage shuffles. Although this improves
fault tolerance, the additional latency causes such systems to
be a poor fit for interactive or low-latency use cases.

Products like Vertica [15], Teradata, Redshift, and Oracle
Exadata can read external data to varying degrees. However,
they are built around an internal data store and achieve



peak performance when operating on data loaded into the
system. Some systems take the hybrid approach of integrating
RDBMS-style and MapReduce execution, such as Microsoft
SQL Server Polybase [11] (for unstructured data) and Hadapt
[5] (for performance). Apache Impala [14] can provide in-
teractive latency, but operates within the Hadoop ecosystem.
In contrast, Presto is data source agnostic. Administrators
can deploy Presto with a vertically-integrated data store like
Raptor, but can also configure Presto to query data from
a variety of systems (including relational/NoSQL databases,
proprietary internal services and stream processing systems)
with low overhead, even within a single Presto cluster.

Presto builds on a rich history of innovative techniques
developed by the systems and database community. It uses
techniques similar to those described by Neumann [16] and
Diaconu et al. [12] on compiling query plans to significantly
speed up query processing. It operates on compressed data
where possible, using techniques from Abadi et al. [3], and
generates compressed intermediate results. It can select the
most optimal layout from multiple projections a là Vertica and
C-Store [19] and uses strategies similar to Zhou et al. [24] to
minimize shuffles by reasoning about plan properties.

IX. CONCLUSION

In this paper, we presented Presto, an open-source MPP SQL
query engine developed at Facebook to quickly process large
data sets. Presto is designed to be flexible; it can be configured
for high-performance SQL processing in a variety of use
cases. Its rich plugin interface and Connector API make it
extensible, allowing it to integrate with various data sources
and be effective in many environments. The engine is also
designed to be adaptive; it can take advantage of connector
features to speed up execution, and can automatically tune read
and write parallelism, network I/O, operator heuristics, and
scheduling to the characteristics of the queries running in the
system. Presto’s architecture enables it to service workloads
that require very low latency and also process expensive, long-
running queries efficiently.

Presto allows organizations like Facebook to deploy a single
SQL system to deal with multiple common analytic use cases
and easily query multiple storage systems while also scaling
up to ∼1000 nodes. Its architecture and design have found a
niche within the crowded SQL-on-Big-Data space. Adoption
at Facebook and in the industry is growing quickly, and our
open-source community continues to remain engaged.
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