
Introduction to Presto on
Docker at scale

2020

Federico Palladoro

About Me

Fede Palladoro
Devops & Data Infra Lead @ Jampp

@fedepalladoro
fede@jampp.com

● Intro to Jampp data stack

● Previous Presto setup on EMR

● Migration to containers

● Orchestrators: Nomad vs Kubernetes

● Presto monitoring

Agenda

What do we do at

Jampp?

#1 #2

User
Acquisition
Find more people to install
and use an app.

App
Retargeting
Re-engage existing users.

Real time bidding (RTB)

Ad exchange

ad spot available

impression

< 70ms
Max Latency

Win!

bid

Participant 1

Participant N

.

.

.

auction

Auction Bid Impression Click
Install /

Event

Ad-Tech funnel

■ Each step decreases volume by an order of magnitude

■ The data criticality increases with each step.

■ We can sample auctions to optimize costs but under no circumstances can we lose

clicks, installs or events.

■ Each table has different access patterns and needs a different partitioning scheme.

+1000/h
Presto Queries

1,8TB-6TB
Total cluster memory

150TB
Data processed by

ELBs per day

1M/s
Auctions received

+1.7 billion
Tracked events per day

 3
Presto Clusters

Some numbers

An overview of our

Data Infrastructure

Our pipeline operational unit

■ One pipeline per event type.

■ Focused on modularity and separation of concerns.

■ Having them separated allows us to optimize for cost without fear of losing critical

messages.

Internal
Data Source

ETLs and data insertion

■ Spark and Hive are very reliable for ETLs and insertion.

■ We use the Hive Metastore as the main interface between engines.

■ Airflow is an amazing tool for scheduling and orchestration.

■ Storing data on S3 allows us to decouple compute from storage

Presto is the main interface with our Data Warehouse

Through the years it became the main method of

interacting with the Data Warehouse for every team in

the company.

● Feeding our Machine Learning algorithms

● Building automatic audience segments

● Ad-Hoc queries through Apache Superset

● Templated reports through a custom UI

● Monitoring data quality

Presto

AWS EMR clusters

■ 1 ETL cluster (Spark/Hive/Tez)

■ 2 or 3 Presto clusters

■ Data stored on S3, we don’t use

HDFS

■ Each cluster is auto scalable

depending the load

■ Shared EMRFS on DynamoDB table

■ Shared Hive Metastore on RDS

The bad

● Troublesome interaction between YARN (Hive, Spark) and non YARN

apps (Presto).

● Low update frequency for fast pacing applications.

● Limited Presto support (i.e: no monitoring, no autoscaling on fleets)

The good

● Provisions out of the box many popular Big Data tools.

● Flexibility to tune applications and shape clusters as needed.

● Mainstream applications are frequently added to the app catalog, like

PrestoSQL v338!

AWS Elastic
MapReduce The ugly

● They upgraded the OS to Amazon Linux 2 without EMR version change

Getting down to business

Moving Presto to
containers

What?

Why?
● Why self-managed and Docker?

○ Lower costs (no EMR fees, no cluster overhead)
○ Quicker version upgrades
○ Local/ci environments just like prod/stg
○ Simpler configuration management

● Why PrestoSQL?
○ Community and user focused
○ Growing at a faster pace, more active contributors
○ Some known bugs already fixed (like hive bucketed tables)
○ Improved features like Cost Based Optimizer (CBO) and Security

● We decided to do two mayor changes:
○ Switch from PrestoDB to PrestoSQL
○ Take ownership of cluster provisioning and maintenance

Building our
docker image

● Based on the offical PrestoSQL image

● Dynamic configuration

○ Presto config and catalog files with templated values

○ Parameters and secrets stored on AWS SSM Parameter

store

○ Segmentio’s chamber to load parameters as env vars on

runtime

○ Unix’s envsubs to render final config files

● Additional tools like java agent for monitoring

Dynamic
configuration

Orchestrator
candidates

● The Tao of HashiCorp

● Orchestration with low complexity

● Support for non-container workloads

● Limited community - less known

● We already have it running

● Great community and tool ecosystem

● Industry-standard solution and battle tested

● High complexity, lot of internal “moving parts”

● Simple to spin-up using EKS/GKE/AKS

Presto setup on Nomad:
Infra level

■ Elastic autoscaling group

for each component

■ Consul: Service discovery

+ Distributed KV

■ Control plane with Consul

& Nomad

■ Traefik as API Gateway /

HTTP Proxy

Presto setup
on Nomad:
App level

Extra
Features

● Nomad job templating with Hashicorp Levant

○ Terraform-like workflow using a single template and a variable

file per cluster/environment

● Autoscaling:

○ Application level: Nomad native support (CPU based)

○ Cluster level: Nomad official autoscaler agent

● Graceful scale-in of Presto workers

○ Autoscaling group hooks

○ Local node script

○ Put new status on presto node state endpoint /v1/info/state

Local
testing

Kubernetes

Operators

● Custom resource that extends k8s API
● Useful to ease maintenance on staful/complex workloads (a.k.a

Day 2)
● Presto operators:

○ Falarica’s presto operator (open source, just released)
○ Starburst presto operator (official, licenced/enterprise)

Helm charts

● Reusable templates of YAML artifacts
● Reduce duplicated code on multi-cluster environments
● Useful for resource creation/deployment (a.k.a Day 1)
● Presto on Helm:

○ PrestoSQL helm chart (non-official, open source)
○ Starburst helm chart (official, licenced/enterprise)

https://github.com/falarica/steerd-presto-operator
https://docs.starburstdata.com/latest/kubernetes/overview.html
https://hub.helm.sh/charts/stable/presto/0.2.1
https://docs.starburstdata.com/latest/k8s/overview.html

Kubernetes
on AWS EKS

Presto on
Kubernetes

operator

Presto on
Kubernetes

operator

Monitoring stack
● We expose low level metrics with JMX java agent for Prometheus.
● Developed a custom exporter to get user level usage metrics from

/v1/query endpoint
● Prometheus stack collects mbeans attributes.
● Grafana for dashboards and custom searches.

HTTP
Scraper

Low level (JMX)

● Memory pools, Heap usage.

● Garbage collection frequency and duration.

● Cluster size and nodes status.

● Active, Pending and Blocked queries.

User level (HTTP API)

● Finished, canceled and failed queries per user.

● Normalized query analytics to detect usage patterns.
Monitoring

relevant
metrics

● Leverage CBO to improve query performance.

● Evaluate the usage of a Presto gateway to manage query

routing to multiple clusters.

● Enable autoscaling from Prometheus metrics.

● Define SLI’s and SLO’s to measure reliability.

● Evaluate Presto on k8s + AWS Fargate (serverless containers)

Next
steps

● Segment.io chamber: https://github.com/segmentio/chamber

● The Tao of Hashicorp: https://www.hashicorp.com/tao-of-hashicorp

● Nomad tutorial: https://learn.hashicorp.com/tutorials/nomad/get-started-install

● PrestoSQL helm chart: https://hub.helm.sh/charts/stable/presto/0.2.1

● Starburst helm chart: https://docs.starburstdata.com/latest/k8s/overview.html

● Falarica’s presto operator: https://github.com/falarica/steerd-presto-operator

● Starburst presto operator:

https://docs.starburstdata.com/latest/kubernetes/overview.html

● AWS EKS Architecture:

https://aws.amazon.com/quickstart/architecture/amazon-eks/

Link
references

https://github.com/segmentio/chamber
https://www.hashicorp.com/tao-of-hashicorp
https://learn.hashicorp.com/tutorials/nomad/get-started-install
https://hub.helm.sh/charts/stable/presto/0.2.1
https://docs.starburstdata.com/latest/k8s/overview.html
https://github.com/falarica/steerd-presto-operator
https://docs.starburstdata.com/latest/kubernetes/overview.html
https://aws.amazon.com/quickstart/architecture/amazon-eks/

Thanks!!

fede@jampp.com

We are hiring!!
jampp.com/jobs

@fedepalladoro

