
DuneSQL
A query engine for Blockchain data

15 June 2023

Jonas Irgens Kylling & Miguel Filipe

Miguel Mascarenhas Filipe

● Love databases since University
● Some early experience in HPC
● At AWS, part of the DynamoDB launch team
● At Skype worked on Distributed Timeseries DB
● Working in Startups since 2015
● Principal Engineer at Dune

Jonas Irgens Kylling

● PhD in Mathematics
● Worked on a Timeseries database at Cognite
● Building data platform at Dune

Agenda

1. Intro to Dune
2. Blockchain Data Challenges
3. Query Experience Challenges
4. The Journey to Trino
5. DuneSQL (extending Trino)
6. Operating DuneSQL
7. Future ahead

Intro to Dune

We are on a mission to
make crypto data accessible

Dune, a community data platform
Dune.com is a platform for querying

public blockchain data & building
beautiful dashboards

https://dune.com

What is a Community Data Platform?

Ethereum

Solana

Community Data

Community

Data

Platform

NFT

DEX

Stablecoin

Finance

Insights ���� ♀
��

Analyst

Developer

Investor

Serverless, open access, community wide collaboration

Blockchain Data Challenges
It’s a distributed Virtual Machine

Blockchain Data Challenges (ingestion)
1. Process and Ingest Raw Data

○ Expose “raw tables” transactions, events, logs
2. Deserialize & Decode Function Calls & Arguments

○ Expose Decoded smart-contract tables & views
○ Almost 1Million views

3. Allow community to build abstractions on top
○ Tables & Views
○ Queries & Dashboards

Query Experience Challenges

● 10 000s of queries executed per day
● 10 000s of queries saved & re-used
● Almost a million Tables & Views

● Very heterogeneous SQL queries
● Bimodal query workloads (Interactive vs Batch)
● Many extremely complex queries (>5000 LOC)

The journey to Trino
● PostgreSQL

○ Sharded per Blockchain
○ Vertical scaling. Bottlenecked on storage size and IOPS

● (Data lake) SQL-on-Spark/Databricks
○ Horizontal scaling & unlimited Blockchains
○ Time-to-Market
○ Not interactive enough, Bad 5th, 10th percentile latency
○ Tied to the vendor (cost, bugs, roadmap)

● Other options evaluated:
○ Self Hosted Spark, Presto & Trino
○ Apache Calcite + Trino

DuneSQL

DuneSQL
● A fork of Trino and custom plugins

○ Support for Spark views
○ Improved UX for blockchain data
○ New datatypes: (U)INT256
○ Features to support migrating from Spark

● Control over the Database
○ Data layout and data types
○ ETL and schema design
○ Query Experience

Binary data & wallet addresses
● Hex strings (Ethereum, etc.): 0x1234abcdef
● We store all data as VARBINARY

● Display data as hex strings
● Varbinary literals as hex strings

INT256
● Cryptography

(Keccak-256 & others)
● Fixed point arithmetic
● EVM native word size is

256 bits
We support reading and writing (U)INT256 to
Delta tables

Building for collaboration
● Every* query is a view
● Very popular feature (used in ~30% of new queries)

Delta Lake on Trino
● The Trino Delta Lake connector is great
● Obstacles when moving from Spark

○ Cannot read Spark views
○ Missing features

■ CREATE OR REPLACE TABLE
■ Custom table properties
■ Generated columns

Delta Lake on Trino
● CREATE OR REPLACE TABLE
● Custom table properties (#17592, #17595)

https://github.com/trinodb/trino/pull/17592
https://github.com/trinodb/trino/pull/17595

Delta Lake on Trino
Delta log limitations
● Cannot have multiple writers

from different query engines
● Performance problems for

streaming tables with large
amounts of metadata
(#17408, #17516)

Trino analysis phase P90 latency

https://github.com/trinodb/trino/pull/17408
https://github.com/trinodb/trino/pull/17516

Operating DuneSQL

Operating DuneSQL

● Handle 10 000s of queries per day
○ Different priority classes & performance tiers
○ Track performance & query error rates

● Provide ~predictable~ performance per tier
● Capacity planning & Fleet Management

○ >4000 cpus/hour
○ >100B S3 req/month
○ >10 clusters

Topology

Scheduling & Load Balancing

● Query Execution Service
○ Queueing , Scheduling & Routing queries
○ Segregation of performance tiers
○ Controlling concurrency & retry logic
○ Performance tracking, Observability

● Trino-Gateway (fork of Lyft’s presto-gateway)
○ Routing Groups & Load Balancing

Clusters and Clustersets

● Fixed size clusters for:
○ predictable capacity & performance
○ reduce blast-radius & noisy-neighbor

● Multiple Cluster-Sets
● Trino Kubernetes operators to automate

operations

apiVersion: query.dune.com/v1beta1
kind: TrinoClusterSet
metadata:
 name: community
 namespace: query-engine
spec:
 replicas: 10
 gateway:
 endpoint: http://trino-gateway.query-engine.svc.cluster.local.:8888
 routingGroup: community
 gatewayHealthcheckWaitSeconds: 60
 clusterSpec:
 accessControlConfigMapName: access-control-u1mtg
 catalogsSecretName: catalogs-
 configProperties: |
 query.max-memory-per-node=5632000MB
 coordinator:
 instanceType: hpc6a.48xlarge
 extraJvmOpts: |
 -XX:+UnlockDiagnosticVMOptions
 image: 1234.dkr.ecr.us-west-1.amazonaws.com/dune-trino:2023-06-13T08-20-16-main-ec04ef9
 nodegroup: trino
 serviceAccountName: trino
 spillToDisk:
 enabled: true
 sizeInGb: 50000
 storageClassName: spilltodisk
 workers:
 count: 5
 instanceType: hpc6a.48xlarge

Trino k8s operators

● Cluster = k8s deployment
● Load Balancer Integration
● Cluster registration
● Cluster Health checks
● Rolling deployments
● Grouped by profile

apiVersion: query.dune.com/v1beta1
kind: TrinoClusterSet
metadata:
 name: community
 namespace: query-engine
spec:
 replicas: 10
 gateway:
 endpoint: http://trino-gateway.query-engine.svc.cluster.local.:8888
 routingGroup: community
 gatewayHealthcheckWaitSeconds: 60
 clusterSpec:
 accessControlConfigMapName: access-control-u1mtg
 catalogsSecretName: catalogs-
 configProperties: |
 query.max-memory-per-node=5632000MB
 coordinator:
 instanceType: hpc6a.48xlarge
 extraJvmOpts: |
 -XX:+UnlockDiagnosticVMOptions
 image: 1234.dkr.ecr.us-west-1.amazonaws.com/dune-trino:2023-06-13T08-20-16-main-ec04ef9
 nodegroup: trino
 serviceAccountName: trino
 spillToDisk:
 enabled: true
 sizeInGb: 50000
 storageClassName: spilltodisk
 workers:
 count: 5
 instanceType: hpc6a.48xlarge

Trino k8s operators

● Autoscaling of clusters
● Fleet management

○

Shout out to our great
colleagues:
 Belén, Florent and James.

Future plans

● Caching S3 requests
● Materialized views
● Frontend integration
● Improved data layout/Secondary indices
● Sandboxed user defined functions
● Incremental view maintenance
● Trino-DBT and ETL

We’re hiring!

● Caching S3 requests
● Materialized views
● Frontend integration
● Improved data layout/Secondary indices
● Sandboxed user defined functions
● Incremental view maintenance
● Trino-DBT and ETL

Contact details

Jonas
jonas@dune.com

Miguel
miguel@dune.com
https://twitter.com/m3thos

Belén
belen@dune.com

Florent
florent@dune.com

James
james@dune.com

mailto:jonas@dune.com
mailto:miguel@dune.com
https://twitter.com/m3thos
mailto:belen@dune.com
mailto:florent@dune.com
mailto:james@dune.com

Thank you!

