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Miguel Mascarenhas Filipe

● Love databases since University
● Some early experience in HPC
● At AWS, part of the DynamoDB launch team
● At Skype worked on Distributed Timeseries DB
● Working in Startups since 2015
● Principal Engineer at Dune



Jonas Irgens Kylling

● PhD in Mathematics
● Worked on a Timeseries database at Cognite
● Building data platform at Dune
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Intro to Dune



We are on a mission to
make crypto data accessible



Dune, a community data platform
Dune.com is a platform for querying 

public blockchain data & building 
beautiful dashboards

https://dune.com


What is a Community Data Platform?
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Serverless, open access, community wide collaboration



Blockchain Data Challenges
It’s a distributed Virtual Machine



Blockchain Data Challenges (ingestion)
1. Process and Ingest Raw Data

○ Expose “raw tables” transactions, events, logs
2. Deserialize & Decode Function Calls & Arguments

○ Expose Decoded smart-contract tables & views
○ Almost 1Million views

3. Allow community to build abstractions on top
○ Tables & Views
○ Queries & Dashboards



Query Experience Challenges

● 10 000s of queries executed per day
● 10 000s of queries saved & re-used
● Almost a million Tables & Views

● Very heterogeneous SQL queries
● Bimodal query workloads (Interactive vs Batch)
● Many extremely complex queries (>5000 LOC)



The journey to Trino
● PostgreSQL

○ Sharded per Blockchain
○ Vertical scaling. Bottlenecked on storage size and IOPS

● (Data lake) SQL-on-Spark/Databricks
○ Horizontal scaling & unlimited Blockchains
○ Time-to-Market
○ Not interactive enough, Bad 5th, 10th percentile latency
○ Tied to the vendor (cost, bugs, roadmap)

● Other options evaluated:
○ Self Hosted Spark, Presto & Trino
○ Apache Calcite + Trino



DuneSQL



DuneSQL
● A fork of Trino and custom plugins

○ Support for Spark views
○ Improved UX for blockchain data
○ New datatypes: (U)INT256
○ Features to support migrating from Spark

● Control over the Database
○ Data layout and data types
○ ETL  and schema design
○ Query Experience



Binary data & wallet addresses
● Hex strings (Ethereum, etc.): 0x1234abcdef
● We store all data as VARBINARY

● Display data as hex strings
● Varbinary literals as hex strings



INT256 
● Cryptography 

(Keccak-256 & others)
● Fixed point arithmetic
● EVM native word size is 

256 bits
We support reading and writing (U)INT256 to 
Delta tables



Building for collaboration
● Every* query is a view
● Very popular feature (used in ~30% of new queries)



Delta Lake on Trino
● The Trino Delta Lake connector is great
● Obstacles when moving from Spark

○ Cannot read Spark views
○ Missing features

■ CREATE OR REPLACE TABLE
■ Custom table properties
■ Generated columns



Delta Lake on Trino
● CREATE OR REPLACE TABLE
● Custom table properties (#17592, #17595)

https://github.com/trinodb/trino/pull/17592
https://github.com/trinodb/trino/pull/17595


Delta Lake on Trino
Delta log limitations
● Cannot have multiple writers 

from different query engines
● Performance problems for 

streaming tables with large 
amounts of metadata 
(#17408, #17516)

Trino analysis phase P90 latency

https://github.com/trinodb/trino/pull/17408
https://github.com/trinodb/trino/pull/17516


Operating DuneSQL



Operating DuneSQL

● Handle 10 000s of queries per day
○ Different priority classes & performance tiers
○ Track performance & query error rates

● Provide ~predictable~ performance per tier
● Capacity planning & Fleet Management

○ >4000 cpus/hour
○ >100B S3 req/month
○ >10 clusters 



Topology



Scheduling & Load Balancing

● Query Execution Service
○ Queueing , Scheduling & Routing queries
○ Segregation of performance tiers
○ Controlling concurrency & retry logic
○ Performance tracking, Observability

● Trino-Gateway (fork of Lyft’s presto-gateway)
○ Routing Groups & Load Balancing



Clusters and Clustersets

● Fixed size clusters for:
○ predictable capacity & performance
○ reduce blast-radius & noisy-neighbor

● Multiple Cluster-Sets
● Trino Kubernetes operators to automate 

operations



apiVersion: query.dune.com/v1beta1
kind: TrinoClusterSet
metadata:
  name: community
  namespace: query-engine
spec:
  replicas: 10
  gateway:
    endpoint: http://trino-gateway.query-engine.svc.cluster.local.:8888
    routingGroup: community
  gatewayHealthcheckWaitSeconds: 60
  clusterSpec:
    accessControlConfigMapName: access-control-u1mtg
    catalogsSecretName: catalogs-
    configProperties: |
      query.max-memory-per-node=5632000MB
    coordinator:
      instanceType: hpc6a.48xlarge
    extraJvmOpts: |
      -XX:+UnlockDiagnosticVMOptions
    image: 1234.dkr.ecr.us-west-1.amazonaws.com/dune-trino:2023-06-13T08-20-16-main-ec04ef9
    nodegroup: trino
    serviceAccountName: trino
    spillToDisk:
      enabled: true
      sizeInGb: 50000
      storageClassName: spilltodisk
    workers:
      count: 5
      instanceType: hpc6a.48xlarge

Trino k8s operators

● Cluster = k8s deployment
● Load Balancer Integration
● Cluster registration
● Cluster Health checks
● Rolling deployments
● Grouped by profile



apiVersion: query.dune.com/v1beta1
kind: TrinoClusterSet
metadata:
  name: community
  namespace: query-engine
spec:
  replicas: 10
  gateway:
    endpoint: http://trino-gateway.query-engine.svc.cluster.local.:8888
    routingGroup: community
  gatewayHealthcheckWaitSeconds: 60
  clusterSpec:
    accessControlConfigMapName: access-control-u1mtg
    catalogsSecretName: catalogs-
    configProperties: |
      query.max-memory-per-node=5632000MB
    coordinator:
      instanceType: hpc6a.48xlarge
    extraJvmOpts: |
      -XX:+UnlockDiagnosticVMOptions
    image: 1234.dkr.ecr.us-west-1.amazonaws.com/dune-trino:2023-06-13T08-20-16-main-ec04ef9
    nodegroup: trino
    serviceAccountName: trino
    spillToDisk:
      enabled: true
      sizeInGb: 50000
      storageClassName: spilltodisk
    workers:
      count: 5
      instanceType: hpc6a.48xlarge

Trino k8s operators

● Autoscaling of clusters
● Fleet management

○

Shout out to our great 
colleagues:
 Belén, Florent and James.



Future plans

● Caching S3 requests
● Materialized views
● Frontend integration
● Improved data layout/Secondary indices
● Sandboxed user defined functions
● Incremental view maintenance
● Trino-DBT and ETL



We’re hiring!

● Caching S3 requests
● Materialized views
● Frontend integration
● Improved data layout/Secondary indices
● Sandboxed user defined functions
● Incremental view maintenance
● Trino-DBT and ETL



Contact details

Jonas
jonas@dune.com

Miguel
miguel@dune.com
https://twitter.com/m3thos

Belén
belen@dune.com

Florent
florent@dune.com

James
james@dune.com
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Thank you!


