
Ibis
Because SQL is everywhere

and so is Python

Intro

Gil Forsyth
Voltron Data

gforsyth

@gforsyth@fosstodon.org

2

Phillip Cloud
Voltron Data

cpcloud

Phillip in the Cloud
cpcloud

Intro

3

Phillip Cloud
Voltron Data

cpcloud

Phillip in the Cloud
cpcloud

Gil Forsyth
Voltron Data

gforsyth

@gforsyth@fosstodon.org

Ibis!

A lightweight Python library for data wrangling.

4

⋱

Show of hands

● Translated data analysis from Pandas to PySpark?
● Prototyped something in Pandas then throw over the wall to a data

engineer?
● Received some Pandas code that was thrown over a wall?
● Used parquet as a cross-language serialization format?

5

You’ve probably done at least one

● Translated code from Pandas to PySpark
● Prototyped in Pandas and thrown over the wall to data eng
● Been the data engineer on the other side of that wall
● Used parquet as a cross-language serialization format

6

Data is local

Data fits in memory

The PyData Stack

Adapted from Jake VanderPlas, “The Unreasonable Effectiveness of Python in
Science”, PyCon 2017 7

Local Execution

connect()

table(‘ratings’)

Slurp up entire table

Local Remote Engine

Load data
Parse types
Perform analysis

8

The PyData translation problem

No one wants to write things twice, but…

Local / Dev Distributed / Prod

9

We need to talk about SQL

10

And it’s between you and the data.

It’s EVERYWHERE

11

Cons

● Effectively untestable*
● *: Sometimes inscrutable
● Slow feedback

Pros

● Standardized†

● Concise*

†: kind of, but also not really

SQL

12

Remote Execution (the good kind)

connect()

Send SQL query

Return results

Local Remote Engine

Conjure query

Execute query

13

Remote Execution (the good kind)

connect()

Send SQL query

Return results

Local Remote Engine

Execute query

SQL query

14

Problem solved*.

*Narrator: It was not
15

The translation problem

The SQL standard is a standard but how standard are standards?

16

The translation problem

17

SQLite

PostgreSQL

The parameterization problem

One big query? Or many small(er) queries?

18

“I want to write it in Python”

We like Python and we want to use it.

19

“I don’t want to write SQL”

SQL can be very concise

Some operations are hard to spell

Recursive common table expressions anyone?

20

What’s the a solution?

Presented with:

- Translation problem
- Parameterization problem
- Want to use Python
- Don’t want to write a bunch of SQL strings

21

Some people*, when presented with a problem,
think, “I know, I’ll generate strings!”...

22*Everyone at some point

Recall our simple example

23

SQLite

PostgreSQL

Sure, it starts off simple enough…

But remember…
24

The translation problem

Function names differ (or don’t exist!)

Function argument order differs

SQL engines have optimized versions of certain common functions

Output formats vary wildly

…

25

The parameterization problem

If the parameters were straightforward, the work would already be done.

Eventually some parameters end up dependent on other conditions…

26

“Outside factors”

“All I’m saying is that it would be great if we could…”

“We’ll fix it later”

“This is a high priority request from…”

And the query grows and grows…

27

This is fine

This is fine

This is fine?

T̷h̷i̸s̶ ̸is̶ ̴̵fi̸̴n̶e̶.̵

T̵̮̘̗̲̬̞̓̍ ̉̋̇ ͜ h̴̡̛͙ ̋̇̅̔ ı̶̞̩ ͛̍ s̸͍̪̦̗̯ ̣͇̥̯̠̞͉̲̔̄ ̋ ̀̂ ͗̐͂ ́̅͛̄ ́̚͝͠ ̸̼̭̱̼͚̥̯͖͋̐͂͋ ̋ ́̚͝͝ı̶̧̻ ͋͊̈ ́͐ ́̆ ́͛͆̾ s̸̛̭̞̊ ́́̅ ͐̔͋͋̊̊͠͠ ̴̧̡͔͍̬̖̖̺̙̖̈ ́̀̄ ́ͅf̵͐ ͗̓̊̌̑̓͑ ̉̈ ́̎͑͋̓̚͠ ̩͔͖͕̭̏ ̢͓̖̥͓̪̦ ̣̳̜̖̜̗̳͖̲̼ į̷ ̣̘̹̱̹̜͈̦ ̃̑̍̊̈ ́̀̒ ̀͘͜ͅn̷̥͕͓̤̫͉̟ ̎̓ ̋̈ ̀̊ ̋̊̆ ̕e̴͆ ̋͠ ̊ ̀̀͌̅͛ ̉̌͊̎ ͐̾ ̣͚ ̨͇̠̲̫̲̙͎̞̟̳̺ ̨͎͍̦̦̠ .̵̧̨̢̪̱̳̖̊̒̔̂͌̓̍͒ ͐̚̚͝

No thanks, I’m not going to use SQL

But remember, it’s everywhere.

34

Where does that leave us?

SQL standards are… not exactly standard*

SQL can be a little convoluted

String generation is madness

But we still want to write our analytics in Python

And we want to take advantage of modern query engines

35

What if…

instead of generating strings “by hand”, you use a type-safe DataFrame
API that eventually generates strings?

36

For any R-stats people in the room, it’s similar to dplyr / dbplyr

Ibis!

A lightweight Python library for data wrangling.

A dataframe API for Python

Interfaces to 16+ query engines

Deferred execution model

37

Deferred Execution

connect()

table(‘ratings’)

AlchemyTable Schema

Build deferred expression
Validate ⇒ Compile ⇒ SQL

SQL query

Execute query

Query result

Local Remote

38

Deferred Execution

connect()

table(‘ratings’)

AlchemyTable Schema

Build deferred expression
Validate ⇒ Compile ⇒ SQL

SQL query

Execute query

Query result

Local

Remote Engine

Metadata Store

39

Deferred Execution

Build deferred expression
Validate ⇒ Compile ⇒ SQL

SQL query

Execute query

Query result

Local

Remote Engine

ratings = ibis.table(
 [
 ("tconst", "str"),
 ("averageRating", "str"),
 ("numVotes", "str"),
],
 name="ratings",
)

40

Validation

Ibis validates expressions at construction – no execution required!

41

Demo Time!

42

Wait, what did I just see?

● select
● filter
● aggregate
● join
● Easily combine expressions

43

Supported backends

ClickHouse
BigQuery
Dask
DataFusion
Druid
DuckDB
Impala
mssql
MySQL
Oracle
pandas
Polars

44

Postgres
PySpark
Snowflake
SQLite
Trino

Scale from dev to prod with less rewriting

BUT: There are no golden tickets

● Floating point math exists
● Regexen
● Data-dependent function behavior

It will definitely be less work than rewriting pandas as a spark DF

45

What’s next?

Cross-dialect .sql() support - 6.0

Unified UDF API - 6.0

More DDL support - 6.0

More (simpler) logical optimizations

New backends? - 6.0 (oracle)

Your Request Here

46

Questions?

https://ibis-project.org/

conda install -c conda-forge ibis-framework
ibis-bigquery
ibis-clickhouse
ibis-dask
ibis-datafusion
ibis-duckdb
ibis-impala
ibis-mysql
ibis-oracle
ibis-polars
ibis-postgres
ibis-pyspark
ibis-snowflake
ibis-sqlite
ibis-trino

pip install ibis-framework
pip install ibis-framework[trino]
pip install ibis-framework[$backend]

ibis-project/ibis

IbisData

ibis-dev/Lobby

Phillip in the Cloud
cpcloud

47

Why is it called Ibis?

Can it read {parquet, csv, json, S3, etc…}?

Yes!

ibis.read_csv(“my_local.csv”)
ibis.read_csv(“my_local.csv.gz”)

ibis.read_parquet(“my_local.parquet”)
ibis.read_parquet(“path/to/folder/of/*.parquet”)

ibis.read_parquet(“s3://bucket/o/*.parquet”)

How does this compare to {PySpark, …}?

The answer to, "how does Ibis compare to X?" is "Ibis helps you use X."

I have a big dataframe in memory already, can I use
Ibis with it?
You bet.

ibis.memtable(some_big_df, name=”cool_new_table”)

