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Ibis!

A lightweight Python library for data wrangling. 
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Show of hands

● Translated data analysis from Pandas to PySpark?
● Prototyped something in Pandas then throw over the wall to a data 

engineer?
● Received some Pandas code that was thrown over a wall?
● Used parquet as a cross-language serialization format?
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You’ve probably done at least one

● Translated code from Pandas to PySpark
● Prototyped in Pandas and thrown over the wall to data eng
● Been the data engineer on the other side of that wall
● Used parquet as a cross-language serialization format
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Data is local

Data fits in memory

The PyData Stack

Adapted from Jake VanderPlas, “The Unreasonable Effectiveness of Python in 
Science”, PyCon 2017 7



Local Execution

connect()

table(‘ratings’)

Slurp up entire table

Local Remote Engine

Load data
Parse types
Perform analysis
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The PyData translation problem

No one wants to write things twice, but…

Local / Dev Distributed / Prod
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We need to talk about SQL
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And it’s between you and the data.

It’s EVERYWHERE
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Cons

● Effectively untestable*
● *: Sometimes inscrutable
● Slow feedback

Pros

● Standardized†

● Concise*

†: kind of, but also not really

SQL
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Remote Execution (the good kind)

connect()

Send SQL query

Return results

Local Remote Engine

Conjure query

Execute query
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Remote Execution (the good kind)

connect()

Send SQL query

Return results

Local Remote Engine

Execute query

SQL query
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Problem solved*.

*Narrator: It was not
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The translation problem

The SQL standard is a standard but how standard are standards?

16



The translation problem
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SQLite

PostgreSQL



The parameterization problem

One big query?  Or many small(er) queries?
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“I want to write it in Python”

We like Python and we want to use it.
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“I don’t want to write SQL”

SQL can be very concise

Some operations are hard to spell

Recursive common table expressions anyone?
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What’s the a solution?

Presented with:

- Translation problem
- Parameterization problem
- Want to use Python
- Don’t want to write a bunch of SQL strings
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Some people*, when presented with a problem, 
think, “I know, I’ll generate strings!”...

22*Everyone at some point



Recall our simple example

23

SQLite

PostgreSQL



Sure, it starts off simple enough…

But remember…
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The translation problem

Function names differ (or don’t exist!)

Function argument order differs

SQL engines have optimized versions of certain common functions

Output formats vary wildly

…

25



The parameterization problem

If the parameters were straightforward, the work would already be done.

Eventually some parameters end up dependent on other conditions…
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“Outside factors”

“All I’m saying is that it would be great if we could…”

“We’ll fix it later”

“This is a high priority request from…”

And the query grows and grows…
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This is fine



This is fine



This is fine?



T̷h̷i̸s̶ ̸is̶ ̴̵fi̸̴n̶e̶.̵



T̵̮̘̗̲̬̞̓̍ ̉̋̇ ͜ h̴̡̛͙ ̋̇̅̔ ı̶̞̩ ͛̍ s̸͍̪̦̗̯ ̣͇̥̯̠̞͉̲̔̄ ̋ ̀̂ ͗̐͂ ́̅͛̄ ́̚͝͠  ̸̼̭̱̼͚̥̯͖͋̐͂͋ ̋ ́̚͝͝ı̶̧̻ ͋͊̈ ́͐ ́̆ ́͛͆̾ s̸̛̭̞̊ ́́̅ ͐̔͋͋̊̊͠͠  ̴̧̡͔͍̬̖̖̺̙̖̈ ́̀̄ ́ͅf̵͐ ͗̓̊̌̑̓͑ ̉̈ ́̎͑͋̓̚͠ ̩͔͖͕̭̏ ̢͓̖̥͓̪̦ ̣̳̜̖̜̗̳͖̲̼ į̷ ̣̘̹̱̹̜͈̦ ̃̑̍̊̈ ́̀̒ ̀͘͜ͅn̷̥͕͓̤̫͉̟ ̎̓ ̋̈ ̀̊ ̋̊̆ ̕e̴͆ ̋͠ ̊ ̀̀͌̅͛ ̉̌͊̎ ͐̾ ̣͚ ̨͇̠̲̫̲̙͎̞̟̳̺ ̨͎͍̦̦̠ .̵̧̨̢̪̱̳̖̊̒̔̂͌̓̍͒ ͐̚̚͝





No thanks, I’m not going to use SQL

But remember, it’s everywhere.
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Where does that leave us?

SQL standards are… not exactly standard*

SQL can be a little convoluted

String generation is madness

But we still want to write our analytics in Python

And we want to take advantage of modern query engines
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What if…

instead of generating strings “by hand”, you use a type-safe DataFrame 
API that eventually generates strings?
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For any R-stats people in the room, it’s similar to dplyr / dbplyr

Ibis!

A lightweight Python library for data wrangling. 

A dataframe API for Python

Interfaces to 16+ query engines

Deferred execution model
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Deferred Execution

connect()

table(‘ratings’)

AlchemyTable Schema

Build deferred expression
Validate ⇒ Compile ⇒ SQL

SQL query

Execute query

Query result

Local Remote
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Deferred Execution

connect()

table(‘ratings’)

AlchemyTable Schema

Build deferred expression
Validate ⇒ Compile ⇒ SQL

SQL query

Execute query

Query result

Local

Remote Engine

Metadata Store
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Deferred Execution

Build deferred expression
Validate ⇒ Compile ⇒ SQL

SQL query

Execute query

Query result

Local

Remote Engine

ratings = ibis.table(
                  [
                  ("tconst", "str"),
                  ("averageRating", "str"),
                  ("numVotes", "str"),
                  ],
                  name="ratings",
               )
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Validation

Ibis validates expressions at construction – no execution required!
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Demo Time!
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Wait, what did I just see?

● select
● filter
● aggregate
● join
● Easily combine expressions
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Supported backends

ClickHouse
BigQuery
Dask
DataFusion
Druid
DuckDB
Impala
mssql
MySQL
Oracle
pandas
Polars

44

Postgres
PySpark
Snowflake
SQLite
Trino



Scale from dev to prod with less rewriting

BUT:  There are no golden tickets

● Floating point math exists
● Regexen
● Data-dependent function behavior

It will definitely be less work than rewriting pandas as a spark DF
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What’s next?

Cross-dialect .sql() support - 6.0

Unified UDF API - 6.0

More DDL support - 6.0

More (simpler) logical optimizations

New backends? - 6.0 (oracle)

**Your Request Here**
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Questions?

https://ibis-project.org/

conda install -c conda-forge ibis-framework
ibis-bigquery
ibis-clickhouse
ibis-dask
ibis-datafusion
ibis-duckdb
ibis-impala
ibis-mysql
ibis-oracle
ibis-polars
ibis-postgres
ibis-pyspark
ibis-snowflake
ibis-sqlite
ibis-trino

pip install ibis-framework
pip install ibis-framework[trino]
pip install ibis-framework[$backend]

ibis-project/ibis

IbisData

ibis-dev/Lobby

Phillip in the Cloud
cpcloud
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Why is it called Ibis?



Can it read {parquet, csv, json, S3, etc…}?

Yes!

ibis.read_csv(“my_local.csv”)
ibis.read_csv(“my_local.csv.gz”)

ibis.read_parquet(“my_local.parquet”)
ibis.read_parquet(“path/to/folder/of/*.parquet”)

ibis.read_parquet(“s3://bucket/o/*.parquet”)



How does this compare to {PySpark, …}?

The answer to, "how does Ibis compare to X?" is "Ibis helps you use X."



I have a big dataframe in memory already, can I use 
Ibis with it?
You bet.

ibis.memtable(some_big_df, name=”cool_new_table”)


