
CDC patterns in
Apache Iceberg
Ryan Blue
Trino Fest – June 2023

Scan for an Iceberg cheat sheet for Spark or Trino

Whatʼs Iceberg?

Iceberg is an open standard
for tables with SQL behavior

Quick refresher
Whatʼs CDC?

Change Data Capture:
As relational tables are
modified, emit an update
stream to keep copies in
sync—capture changes to
tables as they happen

Bank example
Bank accounts

• Account ID and balance
• Updated by primary key
• Layout and order configured

Goal: Keep accounts up-to-date using
incoming transaction data

-- example table
CREATE TABLE accounts (
 account_id bigint,
 balance decimal(12, 2))
PARTITIONED BY (
 bucket(4, account_id))

-- set primary key fields
ALTER TABLE accounts
SET IDENTIFIER FIELDS account_id

-- configure write order/distribution
ALTER TABLE accounts
WRITE DISTRIBUTED BY PARTITION
 LOCALLY ORDERED BY account_id

Double entry bookkeeping

• Each transfer updates 2 accounts
• Total deposits should not change

(transactional consistency)

Transaction source is flexible

• Kafka or kinesis stream
• Upstream table

Transaction data

+----------------+------------+--------+
| transaction_id | account_id | amount |
+----------------+------------+--------+
1	9	-435
1	8	435
2	2	-863
2	4	863
3	6	-530
...
+----------------+------------+--------+

-- bank deposits must be reliable!
SELECT
 sum(balance) AS total_deposits
FROM accounts

Why is CDC difficult?
Wants

• Direct writes — single table
• Accurate historical record
• Time travel to any point
• Consistent within and across tables
• High volume, low latency
• Read-optimized
• Write-optimized
• Schema evolution

Why is CDC difficult?
Wants

• Direct writes — single table
• Accurate historical record
• Time travel to any point
• Consistent within and across tables
• High volume, low latency
• Read-optimized
• Write-optimized
• Schema evolution

Problems

• Lower latency ⇒ more work
• Write amplification
• Batch writes — frequency

⁃ Double update problem
⁃ Transaction alignment/consistency

• Read requirements
⁃ Equality: delete id=5
⁃ Positional: delete A.parquet, pos 11

Change log table

• Historical record
• Time travel to any transaction
• Simple append-only writes
• High volume
• No direct reads, not optimized

Storage trade-off
Direct writes

• One table, one write
• Increases write complexity
• Volume limit
• Double update problem

Most important (and overlooked) decision

Surprisingly effective with Trino!

• Track only changes
• Efficient writes, expensive reads
• Continuous time travel:

WHERE transaction_id < ID

Tip: Handle UPSERT using SQL windows

Change log pattern

-- store only account changes
CREATE TABLE account_updates (
 transaction_id bigint,
 account_id bigint,
 amount decimal(12, 2))
PARTITIONED BY (
 truncate(100000, transaction_id))

-- compute account value at query time
CREATE VIEW accounts AS
SELECT
 account_id,
 sum(amount) AS balance
FROM account_updates

• Direct write to an analytic table
• Uses position deletes (reads data!)
• Supports custom logic

⁃ Count duplicates
⁃ Consume any source data

MERGE pattern

-- squash multiple updates
WITH updates AS (
 SELECT
 account_id,
 sum(amount) AS amount
 FROM transactions
 GROUP BY account_id
)

MERGE INTO accounts a USING updates u
ON a.account_id = u.account_id
WHEN MATCHED THEN UPDATE
 SET a.balance = a.balance + u.amount

Eager copy-on-write

• Rewrite files as needed
• High write amplification
• Do work at write time for fast reads
• Example table: rewrites up to 4 files

Supported in Spark

MERGE strategy trade-off
Lazy merge-on-read

• Write only updates
• Low write amplification
• Defer work to read or compaction
• Example table: creates up to 8 files

Supported in Spark and Trino

Faster

• Closer to real time
• Requires more maintenance
• Exacerbates the strategy trade-off!

Slower

• Higher latency for changes
• Reduces conflicts with services

Commit frequency trade-off

-- squash multiple updates
WITH updates AS (
 SELECT
 account_id,
 sum(amount) AS amount
 FROM transactions
 GROUP BY account_id
)

MERGE INTO accounts a USING updates u
ON a.account_id = u.account_id
WHEN MATCHED THEN UPDATE
 SET a.balance = a.balance + u.amount

Flink UPSERT pattern
Update type trade-off

• Equality update
⁃ No reading needed
⁃ Cannot compact deltas

• Positional update
⁃ Requires locating rows
⁃ Can conflict with updates

Flink UPSERT is NOT recommended

• Inflexible
• Requires aggressive maintenance
• Doesnʼt sort data for efficiency
• Worst pattern in practice

stack.pop()

Why is CDC difficult?
Wants

• Direct writes — single table
• Accurate historical record
• Time travel to any point
• Consistent within and across tables
• High volume, low latency
• Read-optimized
• Write-optimized
• Schema evolution

Why is CDC difficult?
Wants

• Direct writes — single table
• Accurate historical record
• Time travel to any point
• Consistent within and across tables
• High volume, low latency
• Read-optimized
• Write-optimized
• Schema evolution

Reasons to use the change log pattern

Why is CDC difficult?
Wants

• Direct writes — single table
• Accurate historical record
• Time travel to any point
• Consistent within and across tables
• High volume, low latency
• Read-optimized
• Write-optimized
• Schema evolution

Reasons to use the MERGE pattern
- Use eager rewrites by default (copy-on-write)
- Use lazy rewrites for frequent updates

Hybrid pattern: MERGE + change log
Best of both patterns

• Land updates in change log table
⁃ Optimized for writes
⁃ Historical record, time travel

• Periodically MERGE
⁃ Simple reads
⁃ Separates concerns

• Optional view for read efficiency
⁃ Low data latency
⁃ Infrequent MERGE

Worst of both patterns

• Eager/lazy strategy trade-off
• Commit frequency trade-off
• Complex pipeline

Future work
Branches and tags

• Maintain change log in a branch
• Tag periodic MERGE results
• Use views to apply latest changes

New patterns

• LSM patterns
⁃ Equality updates with sorted data

Questions?
Thanks for attending!
app.tabular.io/signup

