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Whatʼs Iceberg?

Iceberg is an open standard 
for tables with SQL behavior

Quick refresher
Whatʼs CDC?

Change Data Capture:
As relational tables are 
modified, emit an update 
stream to keep copies in 
sync—capture changes to 
tables as they happen



 



Bank example
Bank accounts

• Account ID and balance
• Updated by primary key
• Layout and order configured

Goal: Keep accounts up-to-date using 
incoming transaction data

-- example table
CREATE TABLE accounts (
    account_id bigint,
    balance decimal(12, 2))
PARTITIONED BY (
    bucket(4, account_id))

-- set primary key fields
ALTER TABLE accounts
SET IDENTIFIER FIELDS account_id

-- configure write order/distribution
ALTER TABLE accounts
WRITE DISTRIBUTED BY PARTITION
      LOCALLY ORDERED BY account_id



Double entry bookkeeping

• Each transfer updates 2 accounts
• Total deposits should not change

(transactional consistency)

Transaction source is flexible

• Kafka or kinesis stream
• Upstream table

Transaction data

+----------------+------------+--------+
| transaction_id | account_id | amount |
+----------------+------------+--------+
|              1 |          9 |   -435 |
|              1 |          8 |    435 |
|              2 |          2 |   -863 |
|              2 |          4 |    863 |
|              3 |          6 |   -530 |
|            ... |        ... |    ... |
+----------------+------------+--------+

-- bank deposits must be reliable!
SELECT
   sum(balance) AS total_deposits
FROM accounts
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• Read-optimized
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Problems

• Lower latency ⇒ more work
• Write amplification
• Batch writes — frequency

⁃ Double update problem
⁃ Transaction alignment/consistency

• Read requirements
⁃ Equality: delete id=5
⁃ Positional: delete A.parquet, pos 11



Change log table

• Historical record
• Time travel to any transaction
• Simple append-only writes
• High volume
• No direct reads, not optimized

Storage trade-off
Direct writes

• One table, one write
• Increases write complexity
• Volume limit
• Double update problem

Most important (and overlooked) decision



Surprisingly effective with Trino!

• Track only changes
• Efficient writes, expensive reads
• Continuous time travel:

WHERE transaction_id < ID

Tip: Handle UPSERT using SQL windows

Change log pattern

-- store only account changes
CREATE TABLE account_updates (
    transaction_id bigint,
    account_id bigint,
    amount decimal(12, 2))
PARTITIONED BY (
    truncate(100000, transaction_id))

-- compute account value at query time
CREATE VIEW accounts AS
SELECT
    account_id,
    sum(amount) AS balance
FROM account_updates



• Direct write to an analytic table
• Uses position deletes (reads data!)
• Supports custom logic

⁃ Count duplicates
⁃ Consume any source data

MERGE pattern

-- squash multiple updates
WITH updates AS (
    SELECT
        account_id,
        sum(amount) AS amount
    FROM transactions
    GROUP BY account_id
)

MERGE INTO accounts a USING updates u
ON a.account_id = u.account_id
WHEN MATCHED THEN UPDATE
    SET a.balance = a.balance + u.amount



Eager copy-on-write

• Rewrite files as needed
• High write amplification
• Do work at write time for fast reads
• Example table: rewrites up to 4 files

Supported in Spark

MERGE strategy trade-off
Lazy merge-on-read

• Write only updates
• Low write amplification
• Defer work to read or compaction
• Example table: creates up to 8 files

Supported in Spark and Trino



Faster

• Closer to real time
• Requires more maintenance
• Exacerbates the strategy trade-off!

Slower

• Higher latency for changes
• Reduces conflicts with services

Commit frequency trade-off

-- squash multiple updates
WITH updates AS (
    SELECT
        account_id,
        sum(amount) AS amount
    FROM transactions
    GROUP BY account_id
)

MERGE INTO accounts a USING updates u
ON a.account_id = u.account_id
WHEN MATCHED THEN UPDATE
    SET a.balance = a.balance + u.amount



Flink UPSERT pattern
Update type trade-off

• Equality update
⁃ No reading needed
⁃ Cannot compact deltas

• Positional update
⁃ Requires locating rows
⁃ Can conflict with updates

Flink UPSERT is NOT recommended

• Inflexible
• Requires aggressive maintenance
• Doesnʼt sort data for efficiency
• Worst pattern in practice



stack.pop()
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Why is CDC difficult?
Wants

• Direct writes — single table
• Accurate historical record
• Time travel to any point
• Consistent within and across tables
• High volume, low latency
• Read-optimized
• Write-optimized
• Schema evolution

Reasons to use the MERGE pattern
- Use eager rewrites by default (copy-on-write)
- Use lazy rewrites for frequent updates



Hybrid pattern: MERGE + change log
Best of both patterns

• Land updates in change log table
⁃ Optimized for writes
⁃ Historical record, time travel

• Periodically MERGE
⁃ Simple reads
⁃ Separates concerns

• Optional view for read efficiency
⁃ Low data latency
⁃ Infrequent MERGE

Worst of both patterns

• Eager/lazy strategy trade-off
• Commit frequency trade-off
• Complex pipeline



Future work
Branches and tags

• Maintain change log in a branch
• Tag periodic MERGE results
• Use views to apply latest changes

New patterns

• LSM patterns
⁃ Equality updates with sorted data



Questions?
Thanks for attending!
app.tabular.io/signup






