
Reducing query cost and query runtimes
of Trino powered analytics platforms

2024-06-13

Jonas Irgens Kylling, Dune Analytics

2

Dune Analytics

● Product
○ Data platform for blockchain data
○ SQL interface, web page and API
○ Free to use
○ Built on Trino fork and Delta Lake

● Problems
○ Keep cost under control
○ Multi-tenancy
○ Resource utilization

33

Agenda File system caching with
Alluxio

Emulating multiple Trino
clusters sizes

01

02

Reducing query cost and query runtimes of
Trino powered analytics platforms

4

File system caching

5

File system caching
Life of a table scan

https://app.diagrams.net/?page-id=F40uwDhS6PrHX-3RNj47&scale=auto#G1ix37GW3GDq0-Mt2dRdTJ_XnnAaJ_yJ_m

6

File system caching
Motivation

● Trino is very efficient at reading from
object storage
(parquet_max_read_block_size = 16 MB)

● Cloud object storage API operations
are expensive

● ~2.6 cent per TB
● Most queries read the same small

subset of the entire data lake

7

File system caching
Options for reducing S3 costs (Summer 2023)

● Out-of-cluster caching
○ Distributed Alluxio
○ MinIO

● Separate system
● Beware of cross AZ egress costs

8

File system caching
Options for reducing S3 costs (Summer 2023)

● Out-of-cluster caching
○ Distributed Alluxio
○ MinIO

● Use cheaper cloud storage
○ Backblaze, Cloudflare

● Separate system
● Beware of cross AZ egress costs

● Egress costs
● Requires modifying writers

9

File system caching
Options for reducing S3 costs (Summer 2023)

● Out-of-cluster caching
○ Distributed Alluxio
○ MinIO

● Use cheaper cloud storage
○ Backblaze, Cloudflare

● Intra-cluster caching
○ Rubix
○ Alluxio (Trino Fest talk 2023)

● Separate system
● Beware of cross AZ egress costs

● Egress costs
● Requires modifying writers

● Rubix is Hive only, unmaintained
● Need disks on all nodes
● Cache not shared between nodes
● Alluxio PR, maintained and well tested

10

File system caching
Implementation

https://app.diagrams.net/?page-id=F40uwDhS6PrHX-3RNj47&scale=auto#G1ix37GW3GDq0-Mt2dRdTJ_XnnAaJ_yJ_m

11

File system caching
Implementation

https://app.diagrams.net/?page-id=xvWOsTOg_BN734ql4M67&scale=auto#G1ix37GW3GDq0-Mt2dRdTJ_XnnAaJ_yJ_m

12

File system caching
Implementation

https://app.diagrams.net/?page-id=D-g8Dxv-_kJ3g7WzkJdI&scale=auto#G1ix37GW3GDq0-Mt2dRdTJ_XnnAaJ_yJ_m

13

File system caching
Implementation

https://app.diagrams.net/?page-id=sLjHjVYkfa8BGr56zbEA&scale=auto#G1ix37GW3GDq0-Mt2dRdTJ_XnnAaJ_yJ_m

14

File system caching
The journey

● Collaborative effort to go from prototype to merged PR and support
in multiple connectors

● Available for Hive, Iceberg and Delta Lake connectors since (see
#20550 for full credits)

https://github.com/trinodb/trino/issues/20550

15

manifests.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: cache-volume
spec:
 resources:
 requests:
 storage: 2000Gi
 storageClassName: s3cache

File system caching
Usage

apiVersion: v1
kind: Pod
metadata:
 name: trino-worker
spec:
 containers:
 - name: trino
 ...
 volumeMounts:
 - mountPath: /cache
 name: cache
 volumes:
 - name: cache
 persistentVolumeClaim:
 claimName: cache-volume
 ...

/etc/trino/catalog/delta_lake.properties

connector.name=delta_lake
fs.cache.enabled=true
fs.cache.directories=/cache/delta_lake
fs.cache.max-size=1900GB
smaller than disk because of fs
overhead

16

File system caching
Results

● ~20% speed up of TPC query
execution

● ~30% speeds up of analysis phase of
TPC query execution for Iceberg
tables

● ~70% reduction in S3 GET requests

https://github.com/trinodb/trino/pull/18719#issuecomment-1920554941
https://github.com/trinodb/trino/pull/18719#issuecomment-1920554941
https://github.com/trinodb/trino/pull/20803#issuecomment-1959177959
https://github.com/trinodb/trino/pull/20803#issuecomment-1959177959

17

Emulating multiple Trino cluster sizes

18

Emulating multiple cluster sizes
Motivation

● We want to provide differentiated
compute in multi-tenant Trino
clusters

● Instant query execution start
● Low cost per query

Small clusters Large clusters

User

Small query
Large query

19

Emulating multiple cluster sizes
Options

● Standby clusters
○ Idle compute

20

Emulating multiple cluster sizes
Options

● Standby clusters
○ Idle compute

● Resource groups
○ Only enforced at start of query

execution
○ Does not affect running queries

21

Emulating multiple cluster sizes
Options

● Standby clusters
○ Idle compute

● Resource groups
○ Only enforced at start of query

execution
○ Does not affect running queries

● Session properties
○ Hard limits

■ query_max_cpu_time,
query_max_total_memory

○ Limits on some resources
■ task_concurrency

22

Emulating multiple cluster sizes
Options

● Standby clusters
○ Idle compute

● Resource groups
○ Only enforced at start of query

execution
○ Does not affect running queries

● Session properties
○ Hard limits

■ query_max_cpu_time,
query_max_total_memory

○ Limits on some resources
■ task_concurrency

● Alternative: Limit the number of
nodes available to a query

23

Emulating multiple cluster sizes
Limiting the number of nodes

● NodeSelectorFactory
○ Creates NodeSelector,

responsible for assigning splits to
nodes

○ Which nodes are part of the
cluster?

○ Which catalogs are available on
each node (dynamic catalogs)?

private NodeMap createNodeMap(Session session,
Optional<CatalogHandle> catalogHandle)
{
 Set<InternalNode> nodes = catalogHandle
 .map(nodeManager::getActiveCatalogNodes)
 .orElseGet(() -> nodeManager.getNodes(ACTIVE));

 ...
}

24

Emulating multiple cluster sizes
Limiting the number of nodes

● NodeSelectorFactory
○ Creates NodeSelector,

responsible for assigning splits to
nodes

○ Which nodes are part of the
cluster?

○ Which catalogs are available on
each node (dynamic catalogs)?

○ How many workers can be used
in this session?

private NodeMap createNodeMap(Session session,
Optional<CatalogHandle> catalogHandle)
{
 Set<InternalNode> nodes = catalogHandle
 .map(nodeManager::getActiveCatalogNodes)
 .orElseGet(() -> nodeManager.getNodes(ACTIVE));

 nodes = sample(nodes, getMaxNodesToUse(session));

 ...
}

25

Emulating multiple cluster sizes
Motivation

● ~20% reduction in average query
cost

● Better margins on all execution types
● Better resource utilization
● Same query runtimes

Large clusters

User

Small query
SET SESSION max_worker_nodes=16

Large query
SET SESSION max_worker_nodes=32

26

jonas@dune.com

Thank You!

dune.com

https://dune.com/browse/dashboards
https://dune.com/browse/dashboards

27

jonas@dune.com

Questions?

dune.com

https://dune.com/browse/dashboards
https://dune.com/browse/dashboards

