
Scalable and Cost-effective Log
Analytics Solution at Fourkites

June, 2024

Intro

Arpit Garg
SENIOR PRINCIPAL ARCHITECT

- Have experience in building distributed platforms.

- Have worked on large sized DWH on oracle (@amazon) &
Hadoop + Hive + Presto (@Uber).

- Seen the DB/data world since - waiting for a slot/queue from DBA’s/Operations Team was
something normal.

- Enjoy working with SQL.

- Based in India

- arpit.garg@fourkites.com

- Linkedin - https://www.linkedin.com/in/arpit-garg-38039020/

mailto:arpit.garg@fourkites.com
https://www.linkedin.com/in/arpit-garg-38039020/

FourKites Helps Your Supply Chain
Run Better with Visibility Everywhere

Inbound
Visibility from Suppliers

Facilities
And Warehouse Visibility

Transportation
Visibility to B2B/Stores/B2C

End-to-end
Order and Inventory Visibility

FourKites - The world’s largest
network of real-time supply chain data

45,000
TL Carriers

90%
of all global

ocean volume

17,000
airports and 87

Air Centers

96%
of LTL in US

100%
of terminals in NA

3,500
Telematics
Integrations

16 Million
Locations (geofenced

destinations)

950,000
Mobile App
Downloads

100%
rail coverage in NA,

Europe and ANZ

3 Million
Shipments Tracking

Daily 18M with FedEx

● We love producing logs (unfortunate but true).
● 120+ microservices/workers produce 7-8TB of logs daily.

○ ~1 PB in 150 days
● Operations & Support team needs logs with 120+ days retention

for debugging and troubleshooting tickets.
● Using 3rd party log solutions like Logentries, NewRelic is

expensive ~ $500K with limited retention of logs.
○ Difficult to join logs in these systems with our data stores.

Motivation

● Open source solution backed by lower cost storage like object
store + allow querying of data by other engines.

● Ability to provide 120+ days data retention
● Ability to query logs and join it with data in other internal systems

to make troubleshooting faster
● Reduce dependency on 3rd party log solutions

Approach

● Single Pane Of Glass
● It is not only the log-analytics tool
● It is a super tool which can allow you to access any data in

fourkites if it is in S3 or via direct connection to different
databases
○ Currently live for logs, DWH (Redshift + Snowflake) & also metadata db

of Trino+superset
○ Supports dashboard creation - some dashboards are Jira bug

dashboard, spog usage metrics and aws+azure cost data
○ Alerts creation based on patterns in logs, cost alerts etc.

Solution - SPOG

SPOG Architecture

● Key components
○ Fluent-bit to ingest data

■ We use aws EB (Elastic beanstalk)
■ Aws EKS (Elastic Kubernetes Service)
■ Azure AKS(Azure kubernetes service)

○ Lambda - Transformer - for data transformation & field extraction
○ Objectstore - S3 as storage layer

■ parquet format
○ Trino as distributed query engine
○ Superset as BI/Dashboard/SQL-query tool
○ Jenkins for deployment of all components

App EB Instance

Architecture

S3 Trino

RDS

SuperSet
AWS EKS

Azure AKS

Logs

Fluentbit

Fluentbit

Fluentbit

Lambda

Event
Trigger

S3

DWH

7 Day
Retention

120 Day
Retention

Data Parsing
S3

Fluentbit

Fluentbit

Lambda

2024-04-20 02:00:33.760, INFO - [f3456bf64836] PRMS: {"MessageType"=>"FETCH_ELD_LOCATION",

"EldParams"=>{"load_reference_key"=>"565656565", "shipper_id"=>"acme-inc",

"carrier_id"=>"carrier-for-acme-inc", "tracking_id"=>4909090909090,

"is_tracked_by_carrier"=>true, "is_tracked_by_shipper"=>false}, "MessageSource"=>"AWS",

"sqs_publisher"=>"global-worker-tracking", "sender"=>"global-worker-tracking",

"timestamp"=>1713578428981, "sqs_message_id"=>"xxxxxxxxx-03f9-4015-8043-yyyyyyyyy",

"sent_timestamp"=>1713578433730}

S3

Migration

● Logentries - logs
○ Before spog logentries (Rapid7) was our centralized logging solution
○ Once spog was launched we started pushing logs in parallel to both

systems
○ Historical data was moved from logentries daily S3 export to spog via

airflow pipelines

Migration to SPOG

Migration + Parallel Run

S3 Trino SuperSetLogEntries S3

ETL

AirflowDAILY S3 Export

User

Fluentbit
Log Ingestion

Lambda

Event
Trigger

Trino Configuration

● One main table - all_logs
● partition strategy source/datestr/app

○ s3://bucket/log-management/source=aws/datestr=2024-06-13/app=cfw/
○ s3://bucket/log-management/source=ebs/datestr=2024-06-13/app=iw/

● Partition refresh
○ Call system.sync_partition_metadata() & system.register_partition() for

partition refresh.
○ Use airflow pipeline to refresh partitions by polling s3 bucket for new

folders and calling register_partition()

Trino table partition

partition - s3 path

s3 path

● Serving logs to our partners (limited access to data)
○ We have our partners who also want to access logs
○ They are supposed to have access to logs for customers they are

managing.
○ We introduced a flag in each log row to check for the customer identifier

and flag that row as visible/invisible
○ Created views on top of base table

Trino - RLS

● configFile: "rules.json" option for roles/users
● Catalog + Schema + table level privileges

 {
 "user": "trino_read_write",
 "schema": "log",
 "owner": true
 },
 {
 "user": "vcat_user",
 "schema": "vcat",
 "owner": true
 },
 {
 "user": "core_user",
 "schema": "core",
 "owner": true
 },

Trino Auth

 "tables": [
 {
 "user": "trino_read_only",
 "catalog": ".*",
 "schema": ".*",
 "table": ".*",
 "privileges": ["SELECT"]
 },
 {
 "user": "vcat_user",
 "catalog": "hive",
 "schema": "vcat",
 "table": ".*",
 "privileges": ["SELECT",
"INSERT", "DELETE",
"GRANT_SELECT", "OWNERSHIP"]
 },

 "tables": [
 {
 "user": "trino_admin",
 "catalog": ".*",
 "schema": ".*",
 "table": ".*",
 "privileges": ["SELECT",
"INSERT", "DELETE",
"GRANT_SELECT", "OWNERSHIP"]
 }, {
 "user": "trino_read_write",
 "catalog": "hive",
 "schema": ".*",
 "table": ".*",
 "privileges": ["SELECT",
"INSERT", "DELETE",
"GRANT_SELECT", "OWNERSHIP"]
 },

Trino Auth

● We use http-server.authentication.type=PASSWORD
auth:
 passwordAuth: |-

trino_read_write:xxxxxx
 trino_read_only:xxxzzzzz

Reference -
https://trino.io/docs/current/security/password-file.html#security-pass
word-file--page-root

Trino User Authentication

Optimizations

Trino Optimization

○ Performance test for trino for concurrency and large queries
■ Adopted memory intensive r5.2xLarge machines

○ Trino do not like large number of small files & fluent-bit pushes us multiple small
files depending on frequency of file cutover.

■ Compaction to rescue
■ Daily compaction jobs to merge files - this is critical for us and we make

sure we leave data consistent
○ Timeout for long running queries

■ Running risk of someone running bad SQL
○ Auto Scaling for trino pods

■ Cost saving
■ possibility of reducing number of trino pods on weekends.

● Aggregate/subset tables for app logs which are large in size
■ Reduced query time and improved response time

Optimizing Lambda - Transformation Layer

● Extract key fields from raw json logs and convert to parquet
● Metrics - Daily Invocation 0.8 million (Prod), peak of 250

concurrent invocation/min
○ Lambda billing is related to memory allocated and duration of execution
○ Monitor resource consuming invocations and tune them

■ High billed invocation query
● filter @type = "REPORT"
● | fields @requestId, @billedDuration
● | sort by @billedDuration desc
● | limit 100

■ Max memory usage query
● filter @type = "REPORT" and @maxMemoryUsed=@memorySize
● | stats
● count_distinct(@requestId)
● by bin(30m)

■ Find lambda invocations which timed out
● These are the ones which gets billed for entire duration and do not return results
● These are great cost saving candidates

SPOG Lambda

○ Captured metrics/stats around spog queries and usage of columns
■ removed parsing of not needed columns

○ Started with 3-4GB of memory allocation and reduced it to 900MB (prod)
○ Reduce cost by a margin of 50% by reducing memory allocated and

optimizing processing

SPOG Lambda

Data Store optimization

SPOG Storage (Compression + Intelligence)

Daily Metrics - ingestion of 7-8TB. 1 million+ files in s3
Retention of 120 days.
○ S3 is cheap (but.. - unless used carefully and smartly).

■ Not cheap when data volumes are 7-8TB/daily ingestion
■ Standard tier is not cheap at large volumes.
■ We had raw layer and transformed layer.

● Initially we persisted data in both raw layer and transformed layer for
backup purpose

● but as we matured in our logic/alerts/system we reduced backup
duration from 90 days to 7 days only.

● logs retention is for 120 days which is compressed logs in parquet.
● S3 archival/delete policies

Above helped us reduce our S3 cost by 75% - as raw logs were json not compressed

UI - Improvements

● On launch day SPOG UI crashed multiple times - as we anticipated less
internal traffic, but actual traffic turned out more.
○ gevent:

■ Superset uses gunicorn which by default used ‘gthread’ worker model.
■ Each thread will handle 1 request at a time and scalability is achieved by increasing workers

(equal to available processors) and threads per worker.
■ This does not fit well since the workload is primarily IO bound and waits for database to execute

queries and scale only to a certain limit.
■ We moved ‘gevent’ model - which helped in scaling concurrent request handling. Page rendering

time improved by 60% to 75% with 100 concurrent requests.

○ Async query execution:
■ Superset by default used sync query mode and this also limited the concurrent query handling and

also timeouts were observed.
■ We adopted ‘async’ mode for query execution. Superset app will receive query, and forward the

task celery worker. It will execute the query and store results in redis cache.
■ UI will only do a status check for query results availability. This helped in improving performance

and allowing superset app server to handle more requests.

SPOG UI Scaling & Improvements

Demo

Demo

● Supporting around 350 application logs (across aws/azure cloud)
● Total users - 300
● Total files ingested ~1 million+ (Daily)
● Data Scanned is in TB’s

Metrics

Success

● Solution to query and analyze logs with larger retention of data
● Costing around $120k for supporting approx 300 (internal +

external users (engg + operations + support))
● 120 days of data retention
● Quick and easy onboarding for any application
● Capability to join/lookup data within fourkites
● Unlimited opportunities to build reports/query data etc.

Lesson Learned

• S3 is not cheap if data volume is large.
• Standardisation of logging format across apps has its benefits
• Reduce log generation at app level itself Vs ignoring the emitted

logs by drop filters/similar
• Lambda cost will increase drastically if there are timeouts

happening consistently.

• S3 intelligent tiering
• Explore - s3 Glacier storage class adoption for increased

retention at lower cost. (need to evaluate cost benefits)
• Audit the data coming into system
• Improve monitoring (especially around fluent-bit + ingestion)
• Cost optimization opportunities
• Learnings from Trino-fest 2024

Next Steps

Q&A

