Hosted by S Starburst
Trino Fest \

Enhancing Trino's Query Performance and
Data Management with Hudi:
Innovations and Future

June 13,2024

% s Ethan Guo

\ ethan@onehouse.ai
v

\\ Speaker Bio

Ethan Guo

=> Data Infrastructure Engineer @ Onehouse.ai
=> Apache Hudi PMC Member
=> Senior Engineer @ Uber

Data (Near Real-Time Analytics with Hudi Incremental Processing),

Networking (App Network Performance with QUIC)

@ in/yihua-ethan-guo/

s

https://www.datacouncil.ai/talks/powering-ubers-global-network-analytics-pipelines-in-near-real-time-with-hudi-delta-streamer-ethan-guo-yihua
https://www.uber.com/blog/employing-quic-protocol/

\\ Trino + Hudi: Fast Analytics + Upserts

[

| 1 Fast SQL query with massively
parallel processing \ Fresher data,
Hudi / reports,.and
analytics
A Fast upserts with incremental
processing in Lakehouse
PoliokokoM=
aresaL Debozkm Kkawa A pache s3 =

||
[I |
Stage 1 Stage 2

Robinhood’s architecture and use cases for Trino and Hudi: https://trino.io/episodes/41.html ™

https://trino.io/episodes/41.html

\\ Agenda

Apache Hudi: The Open Data Lakehouse Platform
Improving Query Performance with Multi-Modal Index in Hudi
Enhancing Trino Hudi Connector

Future of Trino with Hudi

s

Apache Hudi:
The Open Data Lakehouse Platform

\\ Origins@Uber 2016

Context

A Uber in hypergrowth
A Moving from warehouse to lake

A HDFS/Cloud storage is immutable

Problems

A Extremely poor ingest performance
A Wasteful reading/writing

A Zero concurrency control or ACID

Database
Real-time Change
logs in Kafka
120 T8 Bulk ingested every Parquet Files

Actual change < 50068

Le(ele
- =

Fully re-compute \L

every 8 hours again

E2E Data Freshness Parquet Files
~24 hours

Derive

o

File based
Data lake

s

\\ Missing pieces: Upserts, Deletes & Incrementals

s Core Primitives in Hudi
CONSUME ¢
ONLY CHANGES! g Real-time Change A Upserts: Absorb changes to
logs in Kafka
¢ QUERY SNAPSHOTS records and process faster
e L (ONSISTENTLY! 9 21 Reads: Obta
20 ulk ingested.eve et i A — .
0] A IE I% l% 5 = ncremental Reads ain
Actual change < 50068 Paw % records that Changed
Fully re-compute i/. e :
every 8 hours-again
? 9. ()TR[AM T [Snapshot isolation: Read latest
E2E Data Frethness Parqust Files [HANGES? . .
24 hours o | I% IE @o —> committed state consistently
PROCESS CHANGES —
F AST[R? File based (A‘

Data lake

\ (A nHisgi The Lakehouse Platform

DATA STREAMS

g =

...............

MHGQI

DATABASES

ot

CLOUD STORAGE

Wi

v P 7!

ACID Inci ipeli Table Services Multimodal Index

CHNOWOAIAD

LAKEHOUSE PLATFORM

T-Y

BI ANALYTICS
E """ presto a ,5
....... \D’ | F— :l INTERACTIVE ANALYTICS
% spaik’

ORCHESTRATION

s

\ (A hiigi Proven @ Massive Scale
||l- ByteDance

https://hudi.apache.org/blog/2021/09/01/building-eb-level-data-lake-using-hudi-at-bytedance, https//www.uber.com/blog/apache-hudi-graduation,
100GB/s > 1Exabyte 4000+ 250+PB
Throughput Even just 1 Table Tables Raw + Derived
o) . -
szg/f, Da|ly > Min 800B Daily -> Min
e Analytics Latency Records/Day Analytics Latency

(write+read)

Walmart GE Aviation

https //www.youtube.com/watch?v=ZamXiT9ags8 https.//aws.amazon.com/blogs/big-data/how-ge-aviation-built-cloud-nat
ive-data-pipelines-at-enterprise-scale-using-the-aws-platform,
+
300GB/d 25+TB 10,000+ 150+
Throughput Datasets Tables Source systems
Hourly CDC,ETL

Analytics Latency Use cases (A‘

https://www.youtube.com/watch?v=ZamXiT9aqs8
https://chowdera.com/2022/184/202207030146453436.html
https://hudi.apache.org/blog/2021/09/01/building-eb-level-data-lake-using-hudi-at-bytedance/
https://www.uber.com/blog/apache-hudi-graduation/

Improving Query Performance
with Multi-Modal Index in Hudi

\\ Improving Query Performance

Key: Reading fewer bytes from Input Tables

Index
Indexes —
e Helpful for selective queries i.e needles in haystacks
e B-trees, bloom-filters, bit-maps..
Caching Table
e Eliminate access to storage in the common case
e Read-through, write-through, columnar vs row based / '
Storage Layout 'n' -C} .
e (ontrol how data is physically organized in storage ; .
e Bucketing, Clustering

\\ Indexes: Locating Records Efficiently

e Widely employed in DB systems With Index Without Index

sl Blaie w | with ONLY tag Each file is merged against ALL updates
aen e Por THAT FILE i for THAT TABLE

: | 25AE | 25AE |
o Improve Query efficiency

- m=
e Indexing provides fast upserts R T [

e C | E3 E3
I:l:ll___H:j

Cost : 1200MB

o Locate information quickly

o Reduce I/0O cost

o Locate records for incoming writes

o Bloom filter based, Simple, Hbase, etc.

Cost : 600MB

https://hudi.apache.ora/bloa/2020/11/11/hudi-indexing-mechanisms/

s

https://hudi.apache.org/blog/2020/11/11/hudi-indexing-mechanisms/
https://hudi.apache.org/blog/2020/11/11/hudi-indexing-mechanisms/

\\ Multi-Modal Index with Metadata Table

e Partitioned for extensibility

©)

©)

©)

©)

©)

Files

Column stats
Bloom filter
Record index

Functional index

e Support CREATE/DROP index

e Support async indexing

Hudi data table

metadata table = Timeline
files in sync
l file group (data)
column stats
file group (data)
bloom filter
Timeline file group (data)

record level index

New functional index in
1.0.0-betal

s

\\ Record-Level Index (RLI) - New in Hudi 0.14

e (hallenges
o Reading data and metadata per file is expensive
o HBase index requires cluster maintenance which is operationally difficult
e Design
o Key-to-location mapping in table-level metadata
m A new partition, ‘record_index”, in the metadata table
m Stored in a few file groups instead of all data files
o Fast index update and lookup

m MDT, an internal Hudi MOR table, enables uniformed fast updates

m HFile format enables fast point lookup

s

\\ Record-Level Index on Storage

File Group ID
by the h

lll Record
Keys

ash

/

“record_index”
partition

/4 File Group O

FG1

FG N-1

File Group O

File Slicet0 /]
HFile

/]

Log File 1

Log File 2

FStl

HFile

HFile

record_key 0 -> partition 1, file 1
record_key 1 -> partition 1, file 1
record_key 2 -> partition 2, file 3
record_key 3 -> partition 1, file 2

Log File 1

Header

HFile Data Block O

record_key 6 -> partition 1, file 5
record_key 7 -> partition 1, file 1

HFile Data Block 1

Footer

s

\\ Performance Benefit from RLI

e |Improves index lookup and write latency

o 1TB dataset, 200MB batch, random updates,
Spark datasource

o 17x speedup on index lookup, 2x on write

e Reduces SQL latency with point lookups
o TPC-DS 10TB datasets, store_sales table, Spark

o 2-3x improvement compared to no RLI

RLI blog: Hudi's blazing fast indexing for large-scale datasets

Global
Simple

RLI

Latency (s)

17x 2x

5 10 15 200 10 20 30

Index Lookup Latency (min) Write Batch Latency (min)

@ No RLI W With RLI

60.0
40.0
3x 2X
20.0 8.4
0.0

SELECT DELETE

SELECT * FROM table WHERE key = 'val'
DELETE FROM table WHERE key = 'val'

s

https://hudi.apache.org/blog/2023/11/01/record-level-index/

Enhancing Trino Hudi Connector

\\ Hudi Support in Trino

e Hive connector

©)

©)

Hudi integration through InputFormat implementation

COW, MOR read-optimized, snapshot, and bootstrap queries (deprecated in

v411, redirects to Hudi connector)

e Hudi connector

©)

COW, MOR read-optimized queries only since v398; no support of
metadata-based (MDT) file listing since v419
Due to removal of Hudi dependencies as part of Trino dehadooping

RO, snapshot, bootstrap query support with MDT in upcoming Trino releases

s

\\ Hudi Storage Abstraction - New in Hudi 0.15

hudi-common

| hudi-common |

® HoodieStorage abstraction —
o Hadoop-independent file system and storage APIs 2
o Extendable with Hadoop FileSystem and [HoodieHadoopStorage] [HudiTrinoStorage]
TrinoFileSystem

e HoodieIOFactory abstraction

o Creates readers and writers for I/0 (e.g., HFile)

i ; HoodieHadoopIOF HudiTrinoIOF
e Hadoop-independent hudi-common [codieradoop iractory][narrne a°t°ry]

module for reader integration

HoodieIOFactory

hudi-common

o Plugs in storage and factory implementations

s

\\ New HFile Reader - New in Hudi 0.15

HFile Format

. H F I le F O rm at S p eC HFile format is based on SSTable file format optimized for range scans/point lookups,

originally designed and implemented by HBase. We use HFile version 3 as the base file
format of the internal metadata table (MDT). Here we describe the HFile format that are
relevant to Hudi, as not all features of HFile are used.

o Defines the HFile Format required by Hudi to

The HFile is structured as follows:

enable fast point lookups in MDT

0

| "Scanned | Data Block |

o Custom HFile implementation (e.g., in C++ or ii’liiﬁn B |

Rust) possible by following the Spec ; ar :: :: :

e New HFile Reader implementation in Java | e :
o Independent of HBase or Hadoop dependencies gt e

section | Meta Index Block |

| File Info Block |

o Backwards compatible with existing Hudi

| Trailer | Trailer, containing |
| | fields and |

releases and storage format | | HFile Version |

HFile Format Spec in Hudi: Y
https://github.com/apache/hudi/blob/master/hudi-io/hfile format.md A\

https://github.com/apache/hudi/blob/master/hudi-io/hfile_format.md

\\ Trino Hudi Connector Integration

® Re-introduce hudi-common dependency

o Makes Hudi support maintainable

o Evolves easily with future storage format changes

o Hadoop-independent with TrinoFileSystem, unlocks optimization like caching
e Support MDT-based file listing

o Uses new HFile Reader to support MDT read and lookup
o 38% query latency reduction® on Trino Hudi connector in TPC-DS 1TB benchmark

e Support MOR snapshot query
o0 HudiDirectoryLister determines the file listing
o New HudiSnapshotDirectoryLister implementation for snapshot queries

* based on Trino Hudi Connector feature branch; we'll upstream the changes.

s

https://github.com/onehouseinc/trino/tree/branch-hudi-connector-features

Future of Trino with Hudi

\\ Hudi 1.x - Database for the Lakehouse

“Reimagination of Hudi, as the transactional database for the lake, with polyglot persistence”

Clients o
Local Client Remote Client
Catalog
Protocols Protocols Manager SQL Code Framewoiks Other QL
Admission Client Communications Manag

Control J
Memory
Query Parsing and Authorization Manager

Process Query Processor Shared
Components

Administration, Manager
ontansuuny | [l | Ao
Dispatch Processing Utilities
——s Pepts =
Loading

Services
Transactional Storage Manager

e)

Main components of a DBMS. Reference diagram highlighting existing (green) and new (yellow) Hudi
Courtesy: The seminal database paper: Architecture of a Database System components, along with external components (blue). Checkout RFC-69 (yl ‘

Catalog
Manager

Administration,
Monitoring &
Utils

Batch Utilities

Shared
Components and

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf
https://github.com/apache/hudi/blob/43a39b907bc3e9c66c691f2aaf9c1ca7c8b1e0c6/rfc/rfc-69/rfc-69.md
https://en.wikipedia.org/wiki/Polyglot_persistence

\ New Indexes in Hudi 1.x

e Functional index (REC-63,in 1.0.0-betal) create INDEX datestr ON hudi_table USING

))) column_stats(ts) options(func='from_unixtime',
o Relational databases allow index on functions or format='yyyy-MM-dd");

expressions
Physical partition path File Name Min of datestr Max of datestr Note
1 id=1/datestr=2022-10-01 b: file_1.| t 2022-10-0 2022-10-0 Old partitionil h
0 Accelerate querles based On results Of org_id=1/datestr / ase_file_1.parque 10-01 10-01 partitioning scheme
org_id=1/datestr=2022-10-02/ base_file_2.parquet 2022-10-02 2022-10-02
CO m p Utat I 0 n S org_id=2/datestr=2022-10-01/ base_file_3.parquet 2022-10-01 2022-10-01

org_id=3/datestr=2022-10-01/ base_file_4.parquet 2022-10-01 2022-10-01

o Absorb partitioning into indexes

0 N 0 m O re h i d e _ a n d _ evo l_Vi n g pa rtiti 0 n S ! org_id=1/ base_file_10.parquet 2022-10-10 2022-10-11 New partitioning scheme

org_id=2/ base_file_11.parquet 2022-10-10 2022-10-15
e Secondaryindex (REC-//,in 1.0.0-beta2)
o Index for non-key fields CREATE INDEX idx_city ON hudi_table USING

secondary_index(city);
o Improves query performance with predicates on

the fields with secondary index built

s

https://github.com/apache/hudi/blob/master/rfc/rfc-63/rfc-63.md
https://github.com/apache/hudi/pull/10814

\\ Roadmap

2024 Q2 2024 Q3 2024 Q4
Trino Hudi Connector o o
Re-introduce Hudi dependency Alluxio-powered caching DML/DDL support under
Snapshot, bootstrap query, MDT support RLI and other index support discussion
. Integration with Hudi 1.0 (with new abstractions)
Hudi 1.x
v O n n n n n n n n IOI n n n n n n n O n n n n n n n O n n n n n n n
1.0.0-betal 1.0.0-beta2 1.0.0 (GA) 1.1 1.2
LSM tree timeline MDT for streaming New format finalized New indexes
NBCC, functional index Secondary index Automated upgrade Support for unstructured data,
New file group reader File group reader impr from 0.x vectors, vector index
Hudi 0.x
7\
' v O n n n n n n n n n n n O n
0.14.1 0.15.0 0.16.0
Record-level index Hudi storage abstraction Bridge release
enhancement New HFile reader Can read both 0.x
Spark 3.5, Flink 1.18 support and 1.0 tables

s

\\ Come Build With The Community!

m‘ Docs : https://hudi.apache.org

('A\ Blogs : httpsy//hudi.apache.org/blog

20 €

Slack : Apache Hudi Slack Group

Twitter : https://twitter.com/apachehudi

Github: https://github.com/apache/hudi/ Give us a star 7 -!

Mailing Llist(s) :

dev-subscribe@hudi.apache.org (send an empty email to subscribe)

Join Hudi Slack

s

https://hudi.apache.org/
https://hudi.apache.org/blog
https://join.slack.com/t/apache-hudi/shared_invite/zt-20r833rxh-627NWYDUyR8jRtMa2mZ~gg
https://twitter.com/apachehudi
https://github.com/apache/hudi/
mailto:dev-subscribe@hudi.apache.org

The Onehouse Universal Data Lakehouse sSwing|by

Onehouse booth

Delivered as a Fully-Managed Cloud Service at Trino Fest 2024

§- g O N E H O U S E Data Warehouses >:“°:< . O 9\2:\% +

o
7N
UNIVERSAL DATA LAKEHOUSE

K e alll

=~

Data Streams §g # A®. @ +

Query Engines

Lakehouse Management

Databases 0 ((q ?Z W MH;[‘Q‘\L + ‘ Continuous Table Managed ‘ Real-time Engines '? - .} §€ +

Ingestion Services Transformations

Cloud Storage ' ‘ e I- + _oi:j:>:> ° :: Data Engineering m‘ é > S;‘i"éiﬁgz +

Catalog Interoperability .
Data Science \% g_f} °§’ 0 +

A

”~ ONEHOUSE

Hosted by S Starburst

Trino Fest

Thanks!

Questions?

\

Enhancing Trino's Query Performance and
Data Management with Hudi:
Innovations and Future

Join Hudi Slack

s

