
Enhancing Trino's Query Performance and 
Data Management with Hudi:

Innovations and Future

             Ethan Guo

ethan@onehouse.ai

 June 13, 2024



Speaker Bio

in/yihua-ethan-guo/

Ethan Guo
➔ Data Infrastructure Engineer @ Onehouse.ai

➔ Apache Hudi PMC Member

➔ Senior Engineer @ Uber

Data (Near Real-Time Analytics with Hudi Incremental Processing),

Networking (App Network Performance with QUIC)

https://www.datacouncil.ai/talks/powering-ubers-global-network-analytics-pipelines-in-near-real-time-with-hudi-delta-streamer-ethan-guo-yihua
https://www.uber.com/blog/employing-quic-protocol/


Trino + Hudi: Fast Analytics + Upserts
Trino
❏ Fast SQL query with massively 

parallel processing

Robinhood’s architecture and use cases for Trino and Hudi: https://trino.io/episodes/41.html

Fresher data, 
reports, and 

analyticsHudi
❏ Fast upserts with incremental 

processing in Lakehouse

https://trino.io/episodes/41.html


Agenda

● Apache Hudi: The Open Data Lakehouse Platform

● Improving Query Performance with Multi-Modal Index in Hudi

● Enhancing Trino Hudi Connector

● Future of Trino with Hudi



Apache Hudi:
The Open Data Lakehouse Platform



Origins@Uber 2016

Context

❏ Uber in hypergrowth

❏ Moving from warehouse to lake

❏ HDFS/Cloud storage is immutable

Problems

❏ Extremely poor ingest performance

❏ Wasteful reading/writing

❏ Zero concurrency control or ACID



Consume 
only changes?

Process changes 
faster?

Stream Out 
changes?

Query snapshots 
consistently?

❏ Upserts:  Absorb changes to 

records and process faster

❏ Incremental Reads: Obtain 

records that changed

❏ Snapshot isolation: Read latest 

committed state consistently

Core Primitives in Hudi

Missing pieces: Upserts, Deletes & Incrementals



                  The Lakehouse Platform



                   Proven @ Massive Scale

https://www.youtube.com/watch?v=ZamXiT9aqs8 

https://chowdera.com/2022/184/202207030146453436.html
https://hudi.apache.org/blog/2021/09/01/building-eb-level-data-lake-using-hudi-at-bytedance/ 

100GB/s
Throughput

> 1Exabyte
Even just 1 Table

Daily -> Min
Analytics Latency

70%
CPU Savings 
(write+read)

300GB/d
Throughput

25+TB
Datasets

Hourly
Analytics Latency

https://aws.amazon.com/blogs/big-data/how-ge-aviation-built-cloud-nat
ive-data-pipelines-at-enterprise-scale-using-the-aws-platform/

10,000+
Tables

150+
Source systems

CDC, ETL
Use cases

https://www.uber.com/blog/apache-hudi-graduation/

4000+
Tables

250+PB
Raw + Derived

Daily -> Min
Analytics Latency

800B
Records/Day

https://www.youtube.com/watch?v=ZamXiT9aqs8
https://chowdera.com/2022/184/202207030146453436.html
https://hudi.apache.org/blog/2021/09/01/building-eb-level-data-lake-using-hudi-at-bytedance/
https://www.uber.com/blog/apache-hudi-graduation/


Improving Query Performance 
with Multi-Modal Index in Hudi



Improving Query Performance

Indexes

● Helpful for selective queries i.e needles in haystacks
● B-trees, bloom-filters, bit-maps.. 

Caching

● Eliminate access to storage in the common case
● Read-through, write-through, columnar vs row based

Storage Layout 

● Control how data is physically organized in storage
● Bucketing, Clustering

Key: Reading fewer bytes from Input Tables



● Widely employed in DB systems

○ Locate information quickly

○ Reduce I/O cost

○ Improve Query efficiency

https://hudi.apache.org/blog/2020/11/11/hudi-indexing-mechanisms/

Indexes: Locating Records Efficiently

● Indexing provides fast upserts

○ Locate records for incoming writes

○ Bloom filter based, Simple, Hbase, etc.

https://hudi.apache.org/blog/2020/11/11/hudi-indexing-mechanisms/
https://hudi.apache.org/blog/2020/11/11/hudi-indexing-mechanisms/


Multi-Modal Index with Metadata Table

● Partitioned for extensibility

○ Files

○ Column stats

○ Bloom filter

○ Record index

○ Functional index

● Support CREATE/DROP index

● Support async indexing
New functional index in 

1.0.0-beta1



Record-Level Index (RLI) - New in Hudi 0.14
● Challenges

○ Reading data and metadata per file is expensive

○ HBase index requires cluster maintenance which is operationally difficult

● Design

○ Key-to-location mapping in table-level metadata

■ A new partition, “record_index”, in the metadata table

■ Stored in a few file groups instead of all data files

○ Fast index update and lookup

■ MDT, an internal Hudi MOR table, enables uniformed fast updates

■ HFile format enables fast point lookup



Record-Level Index on Storage

“record_index”
partition

FG N-1

FG 1

File Group 0

File Group 0

File Slice t0

…

FS t1

HFile

Log File 1

HFile
record_key 0 -> partition 1, file 1
record_key 1 -> partition 1, file 1
record_key 2 -> partition 2, file 3
record_key 3 -> partition 1, file 2

.

.

.

Compaction

HFile

Log File 1

Header
HFile Data Block 0

record_key 6 -> partition 1, file 5
record_key 7 -> partition 1, file 1

…

HFile Data Block 1
Footer

File Group ID 
by the hash

Record 
Keys Log File 2



SELECT * FROM table WHERE key = 'val'
DELETE FROM table WHERE key = 'val'

Performance Benefit from RLI

● Improves index lookup and write latency

○ 1TB dataset, 200MB batch, random updates, 

Spark datasource

○ 17x speedup on index lookup, 2x on write

17x 2x

2x3x

● Reduces SQL latency with point lookups

○ TPC-DS 10TB datasets, store_sales table, Spark

○ 2-3x improvement compared to no RLI

RLI blog: Hudi's blazing fast indexing for large-scale datasets

https://hudi.apache.org/blog/2023/11/01/record-level-index/


Enhancing Trino Hudi Connector



Hudi Support in Trino

● Hive connector

○ Hudi integration through InputFormat implementation

○ COW, MOR read-optimized, snapshot, and bootstrap queries (deprecated in 

v411, redirects to Hudi connector)

● Hudi connector

○ COW, MOR read-optimized queries only since v398; no support of 

metadata-based (MDT) file listing since v419

○ Due to removal of Hudi dependencies as part of Trino dehadooping

○ RO, snapshot, bootstrap query support with MDT in upcoming Trino releases



Hudi Storage Abstraction - New in Hudi 0.15

● HoodieStorage abstraction

○ Hadoop-independent file system and storage APIs

○ Extendable with Hadoop FileSystem and 
TrinoFileSystem

● HoodieIOFactory abstraction

○ Creates readers and writers for I/O (e.g., HFile)

● Hadoop-independent hudi-common 
module for reader integration

○ Plugs in storage and factory implementations

HoodieStorage

HoodieHadoopStorage HudiTrinoStorage

hudi-common

HoodieIOFactory

HoodieHadoopIOFactory HudiTrinoIOFactory

hudi-hadoop-common trino-hudi

hudi-common



New HFile Reader - New in Hudi 0.15

● HFile Format Spec

○ Defines the HFile Format required by Hudi to 

enable fast point lookups in MDT

○ Custom HFile implementation (e.g., in C++ or 

Rust) possible by following the Spec

● New HFile Reader implementation in Java

○ Independent of HBase or Hadoop dependencies

○ Backwards compatible with existing Hudi 

releases and storage format

HFile Format Spec in Hudi: 
https://github.com/apache/hudi/blob/master/hudi-io/hfile_format.md

https://github.com/apache/hudi/blob/master/hudi-io/hfile_format.md


Trino Hudi Connector Integration

● Re-introduce hudi-common dependency
○ Makes Hudi support maintainable

○ Evolves easily with future storage format changes

○ Hadoop-independent with TrinoFileSystem, unlocks optimization like caching

● Support MDT-based file listing
○ Uses new HFile Reader to support MDT read and lookup

○ 38% query latency reduction* on Trino Hudi connector in TPC-DS 1TB benchmark

● Support MOR snapshot query
○ HudiDirectoryLister determines the file listing

○ New HudiSnapshotDirectoryLister implementation for snapshot queries

* based on Trino Hudi Connector feature branch; we’ll upstream the changes.

https://github.com/onehouseinc/trino/tree/branch-hudi-connector-features


Future of Trino with Hudi



Hudi 1.x - Database for the Lakehouse

Main components of a DBMS. 
Courtesy: The seminal database paper: Architecture of a Database System 

Reference diagram highlighting existing (green) and new (yellow) Hudi 
components, along with external components (blue). Checkout RFC-69

“Reimagination of Hudi, as the transactional database for the lake, with polyglot persistence”

https://dsf.berkeley.edu/papers/fntdb07-architecture.pdf
https://github.com/apache/hudi/blob/43a39b907bc3e9c66c691f2aaf9c1ca7c8b1e0c6/rfc/rfc-69/rfc-69.md
https://en.wikipedia.org/wiki/Polyglot_persistence


New Indexes in Hudi 1.x

● Functional index (RFC-63, in 1.0.0-beta1)
○ Relational databases allow index on functions or 

expressions

○ Accelerate queries based on results of 
computations

○ Absorb partitioning into indexes

○ No more hide-and-evolving partitions!

● Secondary index (RFC-77, in 1.0.0-beta2)
○ Index for non-key fields

○ Improves query performance with predicates on 
the fields with secondary index built

CREATE INDEX datestr ON hudi_table USING 
column_stats(ts) options(func='from_unixtime', 
format='yyyy-MM-dd');

CREATE INDEX idx_city ON hudi_table USING 
secondary_index(city);

https://github.com/apache/hudi/blob/master/rfc/rfc-63/rfc-63.md
https://github.com/apache/hudi/pull/10814


Roadmap
2024 Q32024 Q2 2024 Q4

Trino Hudi Connector

Hudi 1.x

Hudi 0.x

1.0.0-beta1 1.0.0-beta2 1.0.0 (GA) 1.1 1.2

0.15.00.14.1 0.16.0

Re-introduce Hudi dependency
Snapshot, bootstrap query, MDT support

Alluxio-powered caching
RLI and other index support

Integration with Hudi 1.0

LSM tree timeline
NBCC, functional index
New file group reader

MDT for streaming
Secondary index
File group reader impr

New format finalized
Automated upgrade 

from 0.x

New indexes
Support for unstructured data, 

vectors, vector index

Record-level index 
enhancement

Hudi storage abstraction
New HFile reader

Spark 3.5, Flink 1.18 support

Bridge release
Can read both 0.x

and 1.0 tables

DML/DDL support under 
discussion

(with new abstractions)



Come Build With The Community!

Docs : https://hudi.apache.org   

Blogs : https://hudi.apache.org/blog

Slack : Apache Hudi Slack Group

Twitter : https://twitter.com/apachehudi 

Github: https://github.com/apache/hudi/  Give us a star ⭐!

Mailing list(s) : 

    dev-subscribe@hudi.apache.org (send an empty email to subscribe)

Join Hudi Slack

https://hudi.apache.org/
https://hudi.apache.org/blog
https://join.slack.com/t/apache-hudi/shared_invite/zt-20r833rxh-627NWYDUyR8jRtMa2mZ~gg
https://twitter.com/apachehudi
https://github.com/apache/hudi/
mailto:dev-subscribe@hudi.apache.org


 

 

Table 
Services

 

Managed 
Transformations

 

Continuous
Ingestion

Catalog Interoperability

UNIVERSAL DATA LAKEHOUSE

Lakehouse Management

The Onehouse Universal Data Lakehouse  

+         Data Warehouses

Query Engines

Real-time Engines

Data Engineering

 Data Science

         Data Streams

Cloud Storage

Databases

Delivered as a Fully-Managed Cloud Service

Swing by 
Onehouse booth 

at Trino Fest 2024



Thanks!
Questions?

Enhancing Trino's Query Performance and 
Data Management with Hudi:
Innovations and Future

Join Hudi Slack


