
Using Trino and Airflow
for (almost) all your

data problems
Trino Summit 2022 @ The Commonwealth Club, San Francisco

Philippe
• Your speaker this afternoon!

• Solutions Architect @ Astronomer, Inc. (we develop
Apache Airflow commercially)

• Previously data engineering in the financial sector

• Last even attended pre-covid: Presto Summit NYC

https://www.astronomer.io/

Our agenda today
• The transition from a traditional to a federated data model

• Trino is not just for analytics

• Introducing Apache Airflow to orchestrate Trino queries

• Structuring Trino workloads on Apache Airflow

Traditional Approach

Traditional approach
• A central team has to be responsible for building an integration between a producer team and a central data platform.

• The data team views the producer’s data from an external point of view and is further removed from the business context.

• The integrations they build are exposed to unpredictable changes in the source database, and while attempting to keep up
with said changes, the data team can easily become a bottleneck for the business.

Federated data layer approach

Modest cluster, ~$12 a day

Our federated data model

Trino is not just for analytics
• Fast, in-memory processing engine with newly introduced fault-tolerant functionalities for queries.

• Lots of connectors built-in and flexible SPI allows users to roll their own as long as data can be represented in tabular
format.

• If built-in SQL functions are not good enough, it’s possible to implement transformations using user defined functions.

• Run transformations that add value without having to explicitly move data to intermediate systems

create table catalog.schema.table as select * from <…> … or insert into catalog.schema.table select * from <…> …

But sometimes it needs a hand

Designing heavy batch workflows to run on
Trino was challenging and required teams
with specific skillsets. 🧑🔬

Batch workloads often have complex
interdependencies and sequencing
requirements. 🚧

They are also often mission-critical processes,
and their failure needs to be logged, alerted
and handled. 📟

In order to do this we use an orchestrator
such as Apache Airflow. 🌬

What is Airflow?
An open-source platform for
developing, scheduling, and
monitoring batch-oriented

workflows.

Originally developed at Airbnb by
Max Beauchemin to orchestrate

their batch workloads.

Open-sourced since 2015 under
the Apache foundation umbrella.

It is a platform to
programmatically define, author,
schedule and monitor workflows.

Introduced the concept of defining
orchestration workflows as python

code.

Strong community, constantly
evolving. (28.1k github 🌟s, 10M

downloads a month on PyPI).

Used by organizations everywhere,
from small startups to F500

companies.

What is a DAG? Hello world.

Monitor
your
DAGs

Monitor
your
tasks

Task
actions

Structuring Trino workloads on Airflow

• A basic DAG

• Sharded DAG

• Dynamic task mapping

• Is this necessary with fault-tolerant execution?

• Data-aware scheduling

Basic DAG
• This is the simplest approach.

• Consists of running long, expensive queries on Trino as
single Airflow task.

• Task failures are handled by the built-in Airflow retry
mechanism.

• Main problems with this approach are that a lot of compute
resources can be wasted if a task fails, and unreliable
landing times.

The basic DAG
default_args = {

"owner": "me",
"start_date": pendulum.datetime(2021, 1, 1, tz="UTC"),
"retries": 3,
"retry_delay": timedelta(minutes=15),

"catchup": False,
“email_on_failure”: True,
"template_searchpath": "templates",

}
with DAG(dag_id=”simple_dag",

schedule_interval="@daily",
default_args=default_args
) as dag:

process_deposits = TrinoOperator(
task_id="process_deposits",
trino_conn_id="trino_default",
sql="templates/process_deposits.sql",
handler=list,

)

<...>

[process_deposits, process_withdrawals, net_trades] >>
compute_account_balances >> compute_margin_reqs

process_deposits.sql:

insert into lake.banking.cash_position_offsets
select trading.id as account_id,

trans.date, as date,
sum(trans.credits) as credits,
sum(trans.debits) as debits

from bankteam_app.public.transactions trans
join mappingdb.public.account_mapping m on trans.id = m.bank_idjoin trading_db.account trading on trading.id = m.trading_idwhere trans.date >= {{logical_date}}
group by trading.id, trans.date

Sharded structure
• This technique consists of splitting a long, expensive query into logical components, which output to durable storage.

• These ”query components” are orchestrated by an orchestrator such as Apache Airflow.

• This allows the orchestrator to retry a smaller set of tasks in case of failure.

Sharded DAG
for bank_account_group in ["001", "002", "003", "004", "005",
"006", "007", "008", "009", "010"]:

with TaskGroup(group_id=f"bank_accounts_{bank_account_group}") as group_:
deposits_task, withdrawals_task = _create_bank_tasks(bank_account_group)

group_ >> compute_account_balances

for trade_account_group_prefix in ["A", "B", "C", "D"]:
with TaskGroup(group_id=f"trading_accounts_{trade_account_group_prefix}") as group_:

net_trades_task = _create_trade_group_tasks(trade_account_group_prefix)

group_ >> compute_account_balances

compute_account_balances >> compute_margin_reqs

def _create_bank_tasks(account_group):
process_deposits = TrinoOperator(

task_id=f"process_deposits_{account_group}",
trino_conn_id="trino_default",
sql="templates/process_deposits.sql",
handler=list,

params={"account_group": account_group},
)

process_withdrawals = TrinoOperator(
task_id=f"process_withdrawals_{account_group}",
trino_conn_id="trino_default",
sql="templates/process_withdrawals.sql",
handler=list,
params={"account_group": account_group},

)

Templated SQL query
create table lake.banking.cash_position_offsets-{{params.account_group}}-{{run_id}} as
select trading.id as account_id,

trans.date, as date,
sum(trans.credits) as credits,
sum(trans.debits) as debits

from bankteam_app.public.transactions trans
join mappingdb.public.account_mapping m on trans.id = m.bank_id
join trading_db.account trading on trading.id = m.trading_id
where trans.date between {{data_start_interval}} and {{data_end_interval}}
and trans.id like '{{ params.account_group }}%'
group by trading.id, trans.date

Dynamic task mapping

Allows DAG authors to generate tasks at runtime
based on current data, rather than having to know
ahead of time how many tasks would be needed.

DAG code
with DAG(dag_id="dtm_dag", schedule_interval=None, default_args=default_args) as dag:

@task
def get_banks():

return TrinoHook().get_records(
"select bank_id from portfolio_ops_db.public.banks"

)

process_deposits = TrinoOperator.partial(
task_id=f"process_deposits",
trino_conn_id="trino_default",
sql="templates/process_deposits.sql",
handler=list,

).expand(parameters=get_banks())

(
[process_deposits, process_withdrawals, net_trades]
>> compute_account_balances
>> compute_margin_reqs

) insert into lake.banking.cash_position_offsets
select trading.id as account_id,

trans.date, as date,
sum(trans.credits) as credits,
sum(trans.debits) as debits

from bankteam_app.public.transactions trans
join mappingdb.public.account_mapping m on trans.id = m.bank_idjoin trading_db.account trading on trading.id = m.trading_idwhere trans.date >= {{logical_date}}

and trans.counterparty_bank = ?
group by trading.id, trans.date

Graph view

Fault-tolerant execution on Trino
• Introduces task and query based retries in Trino

• Retry policy configures whether Trino retries whole queries, or individual tasks within a query

• Task-based retries are appropriate for large batch workloads, but can introduce overhead for small queries

• Task-based retries require an exchange manager to be configured. This component is responsible for spooling task data for
fault-tolerant execution.

• The exchange manager should use object storage as a backend for scalability

Trino
• Trino queries are split into a series of stages

• These stages are split into tasks which are the
actual execution units of a Trino query

• With a proper exchange manager configured
task output is spooled to shared storage

Data-aware scheduling
• In version 2.4, Airflow introduced “data-aware scheduling” as a feature.

• A dataset is a stand-in for a logical grouping of data.

• Allows DAGs to be scheduled based on another task updating a dataset.

• In a Trino setting, this allows a team to launch a batch job that consumes a dataset produced by another team based on
interdependent transformations in a decoupled yet explicit way.

Data-aware DAG code

Defining outlets
compute_account_balances = TrinoOperator(

task_id="compute_accounts_balances",
sql="sql/compute_accounts_balances.sql",
handler=list,
outlets=[Dataset("trino://lake.analytics.account_balances")],

)

@task(outlets=[Dataset("trino://lake.analytics.account_margin_reqs")])
def compute_margin_requirements():

…

Consuming datasets

with DAG(
dag_id="risk_team_batch_jobs",

schedule=[Dataset("trino://lake.analytics.account_balances")],
default_args=default_args,

) as dag:

…

Data-aware DAG schedule

Datasets view

Takeaways
• The “brute force” method to running Trino is

viable, but task-based fault tolerance should be
enabled on your cluster.

• In fact, I would recommend enabling task-based
fault tolerance by default if your tasks run for over
fifteen minutes on average.

• Trino task-based fault tolerance reduces the need
for shards in your code.

• Dynamic task mapping is a great way to structure
your workflows if you need to adapt their
structure at runtime.

• You can produce ”datasets” so that other Airflow
users within your org can use your data products
efficiently with data-aware scheduling.

Thank you! 🦾
Reach out to me on:

Slack, Twitter, LinkedIn, Email, Phone, Signal, Telegram, Mastodon, Facebook, Instagram, or even offline.

⁉

https://trinodb.slack.com/team/UFWEC5TQA
https://twitter.com/pgag_
https://www.linkedin.com/in/pfgagnon/
mailto:philgagnon1@gmail.com
tel:+15145157530
tel:+15145157530
tel:+15145157530
https://mstdn.social/@pg
https://www.facebook.com/pgagn
https://www.instagram.com/pgagn_/

