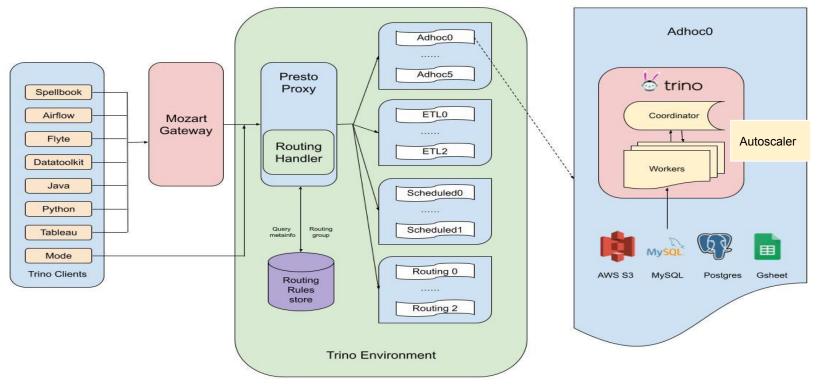


Trino For Large Scale ETL

Charles Song (<u>charless@lyft.com</u>) Ritesh Varyani (<u>riteshvaryani@lyft.com</u>) Data Platform @ Lyft



Contents

- Trino @Lyft
- Reliability & Efficiency
 - Autoscaling
 - Replay Framework
- Trino ETL @Lyft
 - ETL Infra and Stats
 - ETL User adoption
 - Challenges and what's next for ETL

Trino @Lyft

Trino Architecture

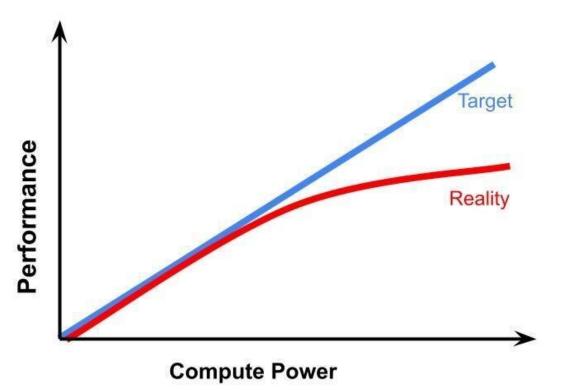
Trino @Lyft

Scale

- 250k queries/day, 2k identical usernames/day
- 10PB daily read data
- 100TB daily write data
- Up to 500 r6g.16xlarge & 250 c6g.16xlarge EC2 instances (auto-scaled)

Operations

- (used to be) ~40 clusters under 15+ routing groups
- 8 different clients

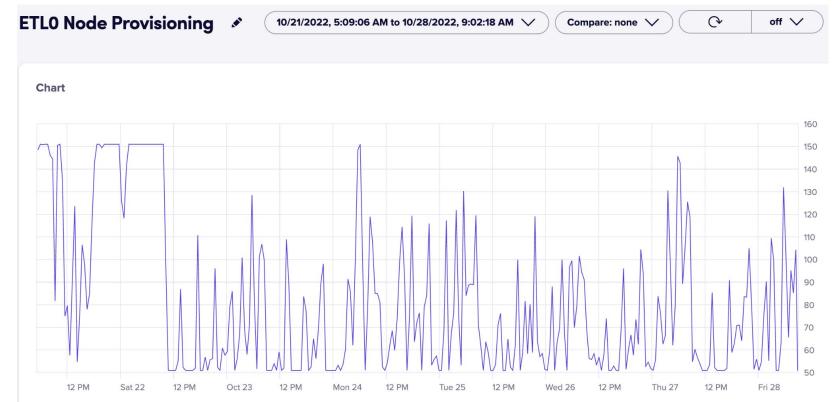


System Reliability & Efficiency

- Routing Strategy Concurrency and Queue Management
- Bottleneck and Noise Neighbor
- Coordinator Health
- All Other "Transient" Issues

System Reliability & Efficiency

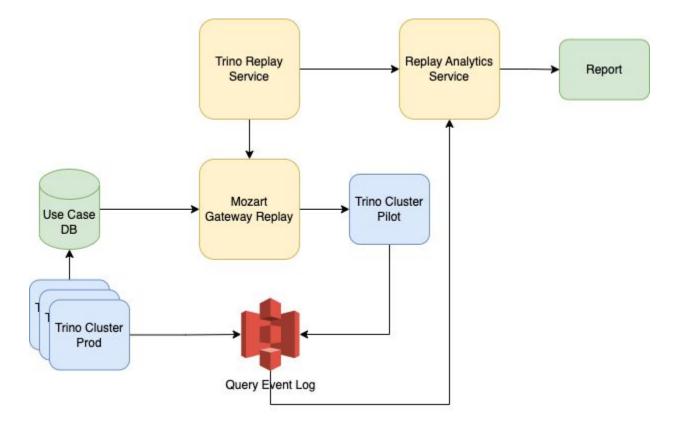
Autoscaling


• Composite Utilization Score

cluster_start_time	stop_time	duration	<pre>memory_score_stats</pre>			cpu_score_stats							
			ct	min	avg	med	max	ct	min	avg	med	max	
2021-10-08T01:06:43	07:21:44	06h15m	376	0	30	30	74	376	0	40	39	74	
2021-10-08T18:05:41	07:19:39	13h13m	794	0	24	20	67	794	0	41	41	69	
2021-10-09T18:07:47	07:36:41	13h28m	809	0	24	21	67	809	0	41	41	79	
2021-10-10T18:04:45	08:36:47	14h32m	870	0	26	23	72	870	0	42	42	70	

- Decommission and Recommission of workers
 - CloneSet
- Monitoring and Automated Management

Autoscaling



Replay Framework

39

Replay Framework

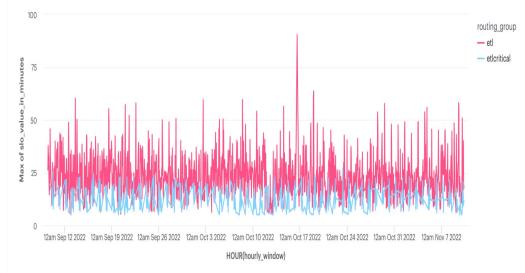
Trino ETL @Lyft

- GA'd July 2022
- Moved all of Trino to AWS Graviton from AWS Intel in H1 2021 (~10% savings)
- Current Trino version: 365
- Push towards deprecating Hive and moving to Trino and Spark
- High demand for faster development iterations/ ANSI-SQI compatible compared to Hive for testing new DAGs and modifying existing ones
- Resiliency built into orchestration layer for ETL
- Create, Insert, DQ, Promote
- Swap partition, insert-overwrite and insert-append with best effort rollback modes developed

ETL Infra @Lyft

- Separate backends for different use cases:
 - Production ETL DAGs
 - High priority TO Core-Concepts use cases (soon to be consolidated with above)
 - ETL backfill in production (successfully run backfills of rides data of 1 year)
 - ETL testing and DAG development
- Every DAG gets their own resource group
- Within a Trino cluster, we use weighted tiering for preferring high priority DAGs over others
- 2 hour overall runtime limit for queries
- Best practices involving right use of broadcast joins, query sharding and scaling writers for ETL

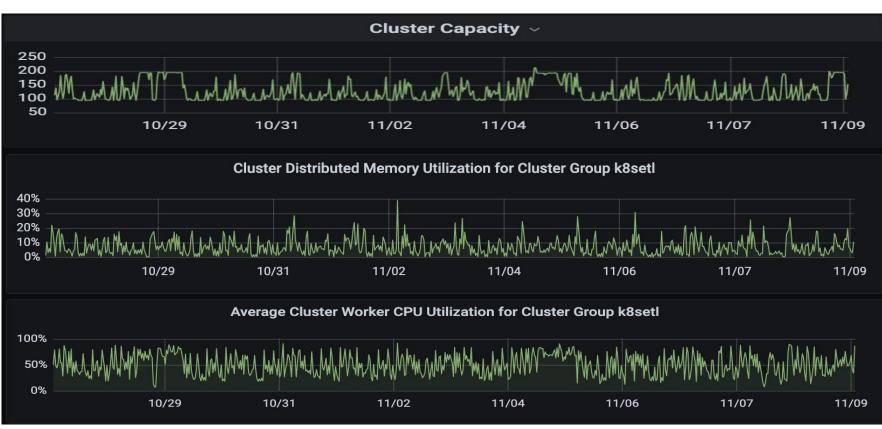
ETL Stats


- 2.5PB daily read data
- 60TB daily write data
- 480 unique DAGs
 - Ride data analytics, experimentation platform, localizations, TBS , Vaulting, Privacy and GDPR teams
- 60000 queries per day across different ETL clusters
- P90 latency ~25 minutes

Monitoring (SLOs)

- SLOs established for ETL et al. workloads tracked weekly
 - Cluster Availability
 - Query Reliability
 - Query Success Rate
 - Query Latencies

P90 Latency(longer running queries) of Etl, Etlcritical by day <= 60 minutes



Trino ETL User Adoption @Lyft

- Migration off of Hive
 - Custom shadow framework
 - Transpiler framework/ Interpolation of prod schemas and tables with shadow ones for writes
 - Data quality framework
 - Correctness, completeness checks between data sets
 - Manual migration
- Service level tiering experience
 - Mostly able to control with queue limit backpressure and weighted resource groups
- (Relevant) Documentation and Best Practices
- Huge dent in ETL runtimes for high number of use cases
 - Overall ETL DAG runtimes reduced anywhere from 30–90% from Hive to Trino

Autoscaling aiding during predictable high traffic times



Challenges for ETL @Lyft

- Challenges
 - Slow rollouts
 - Ensuring reliability for queries in shared tenancy model and changes to data models
 - Accounting for organic growth
 - My query is slow! (query optimization and cluster tuning)

365 Upgrade challenges: <u>10839/10841</u>

What's next for ETL @Lyft

- What's next?
 - Focus on reliability for organic adoption
 - Enable cost based optimizer with Stats collection
 - Sharding at orchestration layer to break down queries
 - Replay framework for writes
 - (Faster) upgrades
 - Enable fault tolerant execution
 - Tardigrade!

Thank you! Questions?

