
Trino For Large
Scale ETL 

Charles Song (charless@lyft.com)

Ritesh Varyani (riteshvaryani@lyft.com)

Data Platform @ Lyft

mailto:charless@lyft.com
mailto:riteshvaryani@lyft.com


● Trino @Lyft
● Reliability & Efficiency

○ Autoscaling
○ Replay Framework

● Trino ETL @Lyft
○ ETL Infra and Stats
○ ETL User adoption
○ Challenges and what’s next for ETL

Contents



Autoscaler

Trino @Lyft



Trino @Lyft

Scale
● 250k queries/day, 2k identical usernames/day
● 10PB daily read data
● 100TB daily write data
● Up to 500 r6g.16xlarge & 250 c6g.16xlarge EC2 instances (auto-scaled)

Operations
● (used to be) ~40 clusters under 15+ routing groups
● 8 different clients



System Reliability & Efficiency

● Routing Strategy - Concurrency and Queue Management
● Bottleneck and Noise Neighbor 
● Coordinator Health
● All Other “Transient” Issues



System Reliability & Efficiency



Autoscaling

● Composite Utilization Score

● Decommission and Recommission of workers
○ CloneSet

● Monitoring and Automated Management



Autoscaling



Replay Framework

39



Replay Framework



Trino ETL @Lyft

● GA’d July 2022
● Moved all of Trino to AWS Graviton from AWS Intel in H1 2021 (~10% savings)
● Current Trino version: 365
● Push towards deprecating Hive and moving to Trino and Spark
● High demand for faster development iterations/ ANSI-SQl compatible compared to 

Hive for testing new DAGs and modifying existing ones
● Resiliency built into orchestration layer for ETL
● Create, Insert, DQ, Promote
● Swap partition, insert-overwrite and insert-append with best effort rollback modes 

developed



ETL Infra @Lyft

● Separate backends for different use cases:
○ Production ETL DAGs
○ High priority T0 Core-Concepts use cases (soon to be consolidated with 

above)
○ ETL backfill in production (successfully run backfills of rides data of 1 year)
○ ETL testing and DAG development

● Every DAG gets their own resource group
● Within a Trino cluster, we use weighted tiering for preferring high priority DAGs over 

others
● 2 hour overall runtime limit for queries
● Best practices involving right use of broadcast joins, query sharding and scaling 

writers for ETL



ETL Stats

● 2.5PB daily read data
● 60TB daily write data
● 480 unique DAGs

○ Ride data analytics, experimentation platform, localizations, TBS , Vaulting, 
Privacy and GDPR teams

● 60000 queries per day across different ETL clusters
● P90 latency ~25 minutes



Monitoring (SLOs)

● SLOs established for ETL et al. 
workloads tracked weekly
○ Cluster Availability
○ Query Reliability
○ Query Success Rate
○ Query Latencies



Trino ETL User Adoption @Lyft
● Migration off of Hive

○ Custom shadow framework
■ Transpiler framework/ Interpolation of prod schemas and tables with 

shadow ones for writes
○ Data quality framework

■ Correctness, completeness checks between data sets
○ Manual migration

● Service level tiering experience
○ Mostly able to control with queue limit backpressure and weighted resource 

groups
● (Relevant) Documentation and Best Practices
● Huge dent in ETL runtimes for high number of use cases

○ Overall ETL DAG runtimes reduced anywhere from 30-90% from Hive to Trino



Autoscaling aiding during predictable high traffic times



Challenges for ETL @Lyft
● Challenges

○ Slow rollouts
○ Ensuring reliability for queries in shared tenancy model and changes to data 

models 
○ Accounting for organic growth
○ My query is slow! (query optimization and cluster tuning)



365 Upgrade challenges: 10839/10841

https://github.com/trinodb/trino/pull/10839
https://github.com/trinodb/trino/pull/10841


What’s next for ETL @Lyft
● What’s next?

○ Focus on reliability for organic adoption
○ Enable cost based optimizer with Stats collection
○ Sharding at orchestration layer to break down queries
○ Replay framework for writes
○ (Faster) upgrades

■ Enable fault tolerant execution
■ Tardigrade!



Thank you! Questions? 


