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100+ of nodes

300+ queries per minute


TB size query input 

Generated at 3M TPS

Accumulated in PB

Manufacturing Data Trino Cluster
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Kappa Architecture
• Goals 

• Exactly-once delivery


• Low latency


• High ingestion performance


• High query performance
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• Trino’s Kafka connector 

• Limited query performance


• Predicate pushdown fields:

• Kafka offset


• Kafka timestamp


• Kafka partition ID


• No predicate pushdown for message ➔ Full scan

Kappa Architecture
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Real-time Processing Engine
Spark (Structured Streaming) Flink



Real-time Processing Engine

Processing Engine Spark
Flink

Mode Micro Batch Continuous

Exactly-once ✔ ✘ ✔

Low Latency ✘ ✔ ✔



Real-time Processing Engine

Streaming Benchmarks (Yahoo, https://github.com/yahoo/streaming-benchmarks)

Spark Flink13 seconds

Less than 2 seconds

https://github.com/yahoo/streaming-benchmarks


Real-time Processing Engine
• Spark 
• Basic stream processing features


• e.g. watermark, windowing, stream join


• Flink 
• Advanced stream processing features


• e.g. custom window, custom trigger, evictor, side output

sparkDataFrame 
    .withWatermark() 
    .groupBy() 
    .window() 
    .agg()

flinkDataStream 
    .assignTimestampsAndWatermarks() 
    .keyBy() 
    .window() 
    .trigger() 
    .evictor() 
    .allowedLateness() 
    .sideOutputLateData() 
    .reduce/aggregate/apply()



Real-time Processing Engine
• Not sensitive to latency


• Only needs basic streaming features


➔ Spark


• Latency is important


• Needs advanced streaming features


➔ Flink
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Exactly-once Delivery
• Three conditions for exactly-once delivery


• Processing engine that supports exactly-once semantics


• Replayable source (e.g. Kafka)


• Transactional sink (=Transactional table)


➔ We need transactional table (to achieve exactly-once delivery)



Transactional Table

• Snapshot isolation


• Atomic write


• Consistent read
Snapshot 1


(committed)

Writer

Snapshot 2

(committed)

Snapshot 3

(Not committed)

Reader

Consistent read Atomic write
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Small File Issue

• Problem occurs when processing a large number of small files


• Large number of files ➔ High coordinator load


• Small file size ➔ Ineffective data skipping


• Real-time data accelerates small file issue


➔ We need compaction



Compaction
• Combines small data files into one large file


• Transactional table allows jobs to use different snapshots 


• Ingestion job


• Compaction job


• Query job


• Compaction + Transactional table ➔ Solve small file issue

Snapshot 1 Snapshot 2 Snapshot 3

Query

Job

Compact

Job

Injestion

Job



Data Source

User

Kappa Architecture

Transactional Table

Compaction



Data Source

User

Kappa Architecture

Transactional Table

Compaction



Transactional Table Formats



Transactional Table Formats



Hudi vs Iceberg
• Hudi provides lower latency (than Iceberg)


• Columnar base file + Row-based delta file


• Faster write (append/update)


• Hudi provide auto compaction (that Iceberg does not)


• No code for compaction


• No scheduling for compaction jobs

Base File

Delta File

Delta File

Delta File

Delta File

Columnar Row-based



Hudi vs Iceberg
• Trino can not read Hudi’s delta files


    ➔ Can not get low latency on Trino 


• Hudi had lower performance


• Insert was 9% slower


• Upsert was 40% slower


• Query was 6 times slower
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Performance Goals

• Low latency


• High ingestion performance


• High query performance


➔ There is a trade-off here

Low Latency

Ingestion

Performance

Query

PerformanceBatch



Fine Tuning Guidelines

1. Low latency is expensive


2. How to set parallelism


3. How to optimize compaction


4. Why should we expire snapshots



Fine Tuning Guidelines

1. Low latency is expensive 
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3. How to optimize compaction


4. Why should we expire snapshots



1. Low Latency is Expensive

• What is Flink checkpoint?


• At each checkpoint, workers commit records


• Users can only query committed records


➔ Checkpoint interval == Latency



1. Low Latency is Expensive
• Costs of low latency


• Low ingestion performance


• Small file issue


• Expensive compaction


➔ Set latency as low as you really need



Fine Tuning Guidelines

1. Low latency is expensive


2. How to set parallelism 

3. How to optimize compaction


4. Why should we expire snapshots



2. How to set parallelism

• Large number of small workers? (High parallelism)


• Small number of large workers? (Low parallelism)


• Set equals to the number of Kafka partitions?



2. How to set parallelism
• High parallelism (large number of small workers)


• High checkpoint creation time


 ➔ Low ingestion performance


 ➔ High latency


• Small file issue


• Low parallelism (small number of large workers)


• Long failure recovery time



Fine Tuning Guidelines

1. Low latency is expensive


2. How to set parallelism


3. How to optimize compaction 

4. Why should we expire snapshots



3. How to optimize compaction
• How compaction works 

1. Read data file list

2. Group data files by partition

3. Re-group data files into file groups (with max file group size)

4. Read and sort each file group

5. Write into new data files

6. Add new Snapshot

7. Commit



3. How to optimize compaction

• How to optimize compaction 

• Enable partial commit (to prevent commit conflict)


• Apply time-based partition


• Compact after partition is complete (to prevent commit conflict)


 (Continued on next slide)



3. How to optimize compaction
• How to optimize compaction 

• Sort data files


• Do not use default bin-packing


• Otherwise, file pruning will not work well


• Choose right sort strategy


• Basic sort vs Z-order sort


• Basic sort is better for most use cases (including our case)
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4. Why should we expire snapshots

• Checkpoint and compaction job adds a new snapshot


• Too many snapshot cause


• Large metadata ➔ Reduce query performance


• Too many unnecessary data files


• We should expire unused snapshots



Let’s Recap
• Lambda vs Kappa


• Trino’s Kafka Connector


• Real-time Processing Engine


• Exactly-once Delivery


• Small File Issue ➔ Compaction


• Transactional Table


• Fine Tuning Guidelines
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Let’s Recap
• Lambda vs Kappa
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Snapshot 1

(committed)

Writer

Snapshot 2
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Consistent read Atomic write
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1. Low latency is expensive


2. How to set parallelism


3. How to optimize compaction


4. Why should we expire snapshots



Performance Test Results
• Ingestion performance 
• Parallelism : 60


• CPU : 60


• Memory : 180GB


• TPS : 1M


• Query performance 
• Trino Worker : 20


• Count 2B : 4.6s


• Aggregate 2B : 3.6s
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