Efficient Kappa Architecture with & Trino

Sanghyun Lee - SK Telecom

Manufacturing Data

Generated at 3M TPS Accumulated in PB

100+ of nodes 300+ queries per minute TB size query input

Trino Cluster

Lambda Architecture

Kappa Architecture

Real-Time Layer

Kappa Architecture

- Goals
 - Exactly-once delivery
 - Low latency
 - High ingestion performance
 - High query performance

Kappa Architecture Image: With the second seco Data Source

Write

Read

Kappa Architecture Data Source

Read

Kafka Connector

Kappa Architecture

Trino's Kafka connector

- Limited query performance
- Predicate pushdown fields:
 - Kafka offset
 - Kafka timestamp
 - Kafka partition ID

Write

Read

Kappa Architecture

Processing Engine

Data Format

Real-time Processing Engine

Spark (Structured Streaming)

Flink

Real-time Processing Engine

Processing Engine	Spark		Elink
Mode	Micro Batch	Continuous	
Exactly-once			
Low Latency			

Real-time Processing Engine Flink Spark 13 seconds 50,000 TPS 50,000 TPS 12,000 12,000 150,000 TPS 150,000 TPS 10,000 10,000 -atency (ms) Latency (ms) 8,000 8,000 6,000 6,000 4,000 4,000 2,000 2,000 0,+ 0 20 20 100 40 60 80 40 60 Percentile

Real-time Processing Engine

- Spark
 - Basic stream processing features
 - e.g. watermark, windowing, stream join

• Flink

- Advanced stream processing features
- e.g. custom window, custom trigger, evictor, side output

sparkDataFrame withWatermark() .groupBy() .window() .agg()

flinkDataStream

- .assignTimestampsAndWatermarks()
- .keyBy()
- .window()
- .trigger()
- .evictor()
- allowedLateness()
- .sideOutputLateData()
- .reduce/aggregate/apply()

Real-time Processing Engine

- Not sensitive to latency
- Only needs basic streaming features
- \rightarrow Spark

- Latency is important
- Needs advanced streaming features
- \rightarrow Flink

User

User

Kappa Architecture

Exactly-once Delivery

- Three conditions for exactly-once delivery
 - Processing engine that supports exactly-once semantics
 - Replayable source (e.g. Kafka)
 - Transactional sink (=Transactional table)

→ We need transactional table (to achieve exactly-once delivery)

Transactional Table

- Snapshot isolation
- Atomic write
- Consistent read

User

User

Small File Issue

- Problem occurs when processing a large number of small files
 - Large number of files → High coordinator load
 - Small file size → Ineffective data skipping
- Real-time data accelerates small file issue

→ We need compaction

Compaction

- Combines small data files into one large file
- - Ingestion job
 - Compaction job
 - Query job

Transactional table allows jobs to use different snapshots

Compaction + Transactional table → Solve small file issue

User

User

Transactional Table Formats

Transactional Table Formats

Hudi vs Iceberg

- Hudi provides lower latency (than lceberg)
 - Columnar base file + Row-based delta file \bullet
 - Faster write (append/update)
- Hudi provide auto compaction (that Iceberg does not)
 - No code for compaction
 - No scheduling for compaction jobs

Hudi vs Iceberg

- Trino can not read Hudi's delta files
 - → Can not get low latency on Trino
- Hudi had lower performance \bullet
 - Insert was 9% slower lacksquare
 - Upsert was 40% slower \bullet
 - Query was 6 times slower

User

- Low latency
- High ingestion performance
- High query performance

→ There is a trade-off here

Fine Tuning Guidelines

- 1. Low latency is expensive
- 2. How to set parallelism
- 3. How to optimize compaction
- 4. Why should we expire snapshots

Fine Tuning Guidelines

1. Low latency is expensive

2. How to set parallelism

3. How to optimize compaction

4. Why should we expire snapshots

1. Low Latency is Expensive

- What is Flink checkpoint?
 - At each checkpoint, workers commit records
 - Users can only query committed records
 - \rightarrow Checkpoint interval == Latency

1. Low Latency is Expensive

- Costs of low latency
 - Low ingestion performance
 - Small file issue
 - Expensive compaction
- → Set latency as low as you really need

Fine Tuning Guidelines

1. Low latency is expensive

2. How to set parallelism

3. How to optimize compaction

4. Why should we expire snapshots

2. How to set parallelism

• Large number of small workers? (High parallelism)

• Small number of large workers? (Low parallelism)

Set equals to the number of Kafka partitions?

2. How to set parallelism

- High parallelism (large number of small workers)
 - High checkpoint creation time
 - → Low ingestion performance
 - → High latency
 - Small file issue
- Low parallelism (small number of large workers)
 - Long failure recovery time

Percentile

Parallelism ---64 ---32 ---16

Fine Tuning Guidelines

1. Low latency is expensive

2. How to set parallelism

3. How to optimize compaction

4. Why should we expire snapshots

3. How to optimize compaction

- How compaction works
 - 1. Read data file list
 - 2. Group data files by partition
 - 3. Re-group data files into file groups (with max file group size)
 - 4. Read and sort each file group
 - 5. Write into new data files
 - 6. Add new Snapshot
 - 7. Commit

3. How to optimize compaction

- How to optimize compaction
 - Enable partial commit (to prevent commit conflict)
 - Apply time-based partition
 - Compact after partition is complete (to prevent commit conflict)

(Continued on next slide)

3. How to optimize compaction

- How to optimize compaction
 - Sort data files
 - Do not use default bin-packing
 - Otherwise, file pruning will not work well
 - Choose right sort strategy
 - Basic sort vs Z-order sort
 - Basic sort is better for most use cases (including our case)

Fine Tuning Guidelines

- 1. Low latency is expensive
- 2. How to set parallelism
- 3. How to optimize compaction
- 4. Why should we expire snapshots

4. Why should we expire snapshots

- Checkpoint and compaction job adds a new snapshot
- Too many snapshot cause
 - Large metadata
 → Reduce query performance
 - Too many unnecessary data files
- We should expire unused snapshots

- Lambda vs Kappa
- Trino's Kafka Connector
- Real-time Processing Engine
- Exactly-once Delivery
- Small File Issue
 -> Compaction
- Transactional Table
- Fine Tuning Guidelines

- Lambda vs Kappa
- Trino's Kafka Connector
- Real-time Processing Engine
- Exactly-once Delivery
- Small File Issue
 -> Compaction
- **Transactional Table**
- Fine Tuning Guidelines

- Lambda vs Kappa
- Trino's Kafka Connector
- Real-time Processing Engine
- Exactly-once Delivery
- Small File Issue
 -> Compaction
- Transactional Table
- Fine Tuning Guidelines

- Lambda vs Kappa
- Trino's Kafka Connector
- Real-time Processing Engine
- Exactly-once Delivery
- Small File Issue → Compaction
- Transactional Table
- Fine Tuning Guidelines

High latency **Basic features**

Low latency Advanced features

- Lambda vs Kappa
- Trino's Kafka Connector
- Real-time Processing Engine
- Exactly-once Delivery
- Small File Issue
 -> Compaction
- Transactional Table
- Fine Tuning Guidelines

Exactly-once Delivery

- Lambda vs Kappa
- Trino's Kafka Connector
- Real-time Processing Engine
- Exactly-once Delivery
- Small File Issue → Compaction
- Transactional Table
- Fine Tuning Guidelines

- Lambda vs Kappa
- Trino's Kafka Connector
- Real-time Processing Engine
- Exactly-once Delivery
- Small File Issue
 -> Compaction
- **Transactional Table**
- Fine Tuning Guidelines

Low performance (Ingestion, Query)

High performance (Ingestion, Query)

- Lambda vs Kappa
- Trino's Kafka Connector
- Real-time Processing Engine
- Exactly-once Delivery
- Small File Issue
 -> Compaction
- Transactional Table
- Fine Tuning Guidelines

Let's Recap

Fine-tuning Guidelines

- 1. Low latency is expensive
- 2. How to set parallelism
- 3. How to optimize compaction
- 4. Why should we expire snapshots

Performance Test Results

- Ingestion performance
 - Parallelism : 60
 - CPU:60
 - Memory : 180GB
 - TPS : 1M
- Query performance
 - Trino Worker: 20
 - Count 2B : 4.6s
 - Aggregate 2B : 3.6s

shyun9417@sk.com