
Optimizing Trino on Kubernetes:
Helm Chart Enhancements for Resilience and

Security

December 11 - 12, 2024

Speakers:

Sebastian Daberdaku Cardo AI

Jan Waś Starburst

About the speakers

Sebastian Daberdaku
Data Engineering Tech Lead

Jan Waś
Software Engineer

Trino Community Helm Chart
https://github.com/trinodb/charts.git

helm repo add trino https://trinodb.github.io/charts/
helm install my-trino trino/trino --version 0.34.0

https://github.com/trinodb/charts.git

Documentation
https://trinodb.github.io/charts/

https://trinodb.github.io/charts/

Development guidelines
1. Does it work correctly?

2. Is it robust?

3. Is it easy to use?

Test framework
1. Make changes with confidence

2. Test every Pull Request

3. Test locally

4. Test end to end

Test suites
1. Defaults

2. Single node

3. Complete values

4. Multiple releases in a single namespace

5. Access control

6. Exchange manager

7. Graceful shutdown

8. Resource groups

Lakehouse tech-stack @ Cardo AI

Trino usage @ Cardo AI
We have been using Trino in production since 2022;

Mostly short-lived, real-time queries;

Initially deployed on AWS EKS with custom (forked) Helm Chart;

Many of the presented features were developed in our fork of the Chart;

Frequent Chart updates required to keep-up with the fast-paced Trino releases;

Finally decided to "donate" these features to the official Chart.

Rendering default TPC-H and TPC-DS
catalogs optional

Initially, the TPC-H and TPC-DS catalogs were always created by the Helm Chart.

These catalogs are useful for benchmarking a given Trino deployment

configuration. After configuring the Trino cluster, users might want to drop these

catalogs.

Mounting static catalogs from a configmap conflicts with the Dynamic Catalogs

feature which allows users to create catalogs at runtime with SQL statements

which must be persisted on a mounted volume.

Now, these catalogs can be easily disabled by Helm Chart users if they wish to do

so.

Disabling TPC-H and TPC-DS catalogs
values.yaml
catalogs:
 tpch: |
 connector.name=tpch
 tpch.splits-per-node=4
 tpcds: |
 connector.name=tpcds
 ptcds.splits-per-node=4

Disabling TPC-H and TPC-DS catalogs
values.yaml
catalogs:
 tpch: null
 tpcds: null

Templating support for
additionalConfigFiles

The additionalConfigFiles properties on the coordinator and worker

configurations allow users to add additional config files in the corresponding

default configuration directories.

These configurations are now templated:

configmap-coordinator.yaml
apiVersion: v1
kind: ConfigMap
...
data:
...
{{- range $fileName, $fileContent := .Values.coordinator.additionalConfigFiles }}
 {{ $fileName }}: |
 {{- tpl $fileContent $ | nindent 4 }}
{{- end }}

File group provider example
The group file must contain a list of groups and members, one per line, separated by

a colon. Users are separated by a comma.

values.yaml
auth:
 refreshPeriod: 60s
 groups: |-
 admin:admin@example.com
 group1:user1@example.com,user2@example.com

File group provider example
values.yaml
coordinator:
 additionalConfigFiles:
 group-provider.properties: |-
 group-provider.name=file
 file.group-file={{- .Values.server.config.path -}}/group-provider.db
 file.refresh-period={{- .Values.groupProvider.refreshPeriod }}
 group-provider.db: |-
 {{- range $k, $v := .Values.groupProvider.groups }}
 {{- printf "%s:%s\n" $k (join "," $v) }}
 {{- end }}
...
groupProvider:
 refreshPeriod: 60s
 groups:
 admin:
 - admin@example.com
 group1:
 - user1@example.com
 - user2@example.com

Resulting group-provider.db
group-provider.db
admin:admin@example.com
group1:user1@example.com,user2@example.com

Worker graceful shutdown
Trino has a graceful shutdown API that can be used on workers in order to ensure

that they terminate without affecting running queries, given a sufficient grace

period.

Once the API is called, the worker performs the following steps:

1. Go into SHUTTING_DOWN state.

2. Sleep for shutdown.grace-period. After this, the coordinator is aware of the

shutdown and stops sending tasks to the worker.

3. Block until all active tasks are complete.

4. Sleep for the grace period again in order to ensure the coordinator sees all tasks

are complete.

5. Shutdown the application.

Enable worker graceful shutdown
If enabled, the worker graceful shutdown

configuration will:
Add a preStop lifecycle event to all worker Pods;

Configures the shutdown.grace-period property;

Configure the workers' accessControl since the default system access control

does not allow graceful shutdowns;

Validate the worker.terminationGracePeriodSeconds value (which must be at

least 2 × shutdown.grace-period);

Ensure that worker.lifecycle is not set.

Cost-effective deployment with worker graceful
shutdown

Autoscaling with worker graceful shutdown

Testing worker graceful shutdown
To test the correctness of the feature the

following test was created:

1. A kubectl container tails the worker Pod's

logs and looks for the "Shutdown requested"

message.

2. Another kubectl container deletes the

worker Pod triggering the pre-stop lifecycle

hook.

Testing worker graceful shutdown
test-graceful-shutdown.yaml
apiVersion: v1
kind: Pod
...
 containers:
 - name: check-logs
 image: bitnami/kubectl:latest
 command: ["sh", "-c"]
 args:
 - >-
 WORKER_POD=$(cat /pods/worker-pod.txt) &&
 kubectl logs ${WORKER_POD}
 --follow
 --container=trino-worker
 --namespace={{ .Release.Namespace }}
 | grep --max-count=1 "Shutdown requested"
...
 - name: trigger-graceful-shutdown
 image: bitnami/kubectl:latest
 command: ["sh", "-c"]
 args:
 - >-
 sleep 5 &&
 WORKER_POD=$(cat /pods/worker-pod.txt) &&
 kubectl delete pod
 ${WORKER_POD}
 --namespace={{ .Release.Namespace }}
...

Enabling JMX Exporter on Trino
Workers

Trino exposes a large number of different

metrics via Java Management Extensions:

JVM metrics (heap size, thread count)

Trino cluster and node statistics

Trino query metrics (number of active, queued, failed, etc.)

Trino task metrics (input data bytes and rows)

Connector metrics

Initially, the JMX Exporter could be enabled only

on the Coordinator.

JMX Exporter support was also added to Workers.

Testing JMX Exporter
Install Prometheus in kind K8s cluster.

Install Trino with JMX Exporter feature enabled for both coordinator and workers.

Verify that JMX metrics are collected by Prometheus.

NetworkPolicy protection
Trino supports multiple authentication types to ensure all users of the system are

authenticated. Different authenticators allow user management in one or more

systems.

All authentication requires secure connections using TLS and HTTPS or process

forwarding enabled.

To configure Trino with TLS there are two alternatives:

1. Use a TLS-terminated Load Balancer or proxy (preferred);

2. Secure Trino directly with valid a TLS certificate (must manage certificates,

increased CPU usage).

NetworkPolicy protection
To prevent unauthorized connections to Trino from within the Kubernetes cluster, a

NetworkPolicy can be used.

On EKS requires VPC CNI Plugin.

Can be used to only allow ingress traffic to Trino from Pods with certain labels or

from given CIDR blocks.

TLS-terminated ALB with NetworkPolicy
protection

Testing NetworkPolicy protection
Connections from unauthorized Pods will time-

out.

test-networkpolicy.yaml
apiVersion: v1
kind: Pod
...
 containers:
 - name: check-connection
 image: {{ include "trino.image" . }}
 command: ["/bin/bash", "-c"]
 args:
 - >-
 curl
 {{ include "trino.fullname" . }}.{{ .Release.Namespace }}:{{ .Values.service.port }}
 --head
 --fail
 --connect-timeout 10
 --max-time 10
 2>&1 | grep -q "timed out"
...

Future work:
Worker Autoscaling with KEDA

The JMX Export, fault-tolerant query execution, and worker graceful shutdown can

be used to implement advanced worker autoscaling.

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
 name: trino-worker
spec:
 scaleTargetRef:
 name: trino-worker
 minReplicaCount: 1
 maxReplicaCount: 5
...
 triggers:
 - type: prometheus
 metricType: Value
 metadata:
 serverAddress: "http://prometheus.example.com"
 threshold: "1"
 metricName: queued_queries
 query: sum by (job) (avg_over_time(trino_queued_queries{job="trino"}[30s]))
 authModes: "basic"
...

Thank you!
For your time and attention.

