
GO TO VIEW > THEME BUILDER TO CHANGE THE FOOTER

Hassle-free
Dynamic Policy
Enforcement in
Trino

Ramanathan Ramu
Pratham Desai

GO TO VIEW > THEME BUILDER TO CHANGE THE FOOTER 2

Policy
Enforcement

2

GO TO VIEW > THEME BUILDER TO CHANGE THE FOOTER 3

Motivation

Too Much Data!Too Many Policies!

+ ⇒

Overwhelmed
Data Engineers!

��

GO TO VIEW > THEME BUILDER TO CHANGE THE FOOTER 4

Policy Enforcement @ LinkedIn

Member
Preferences

Purpose
LimitationData Collection &

Labeling

GO TO VIEW > THEME BUILDER TO CHANGE THE FOOTER 5

Member Preferences : Example

GO TO VIEW > THEME BUILDER TO CHANGE THE FOOTER 6

Data Guard:
How does it work?

6

GO TO VIEW > THEME BUILDER TO CHANGE THE FOOTER 7

Policy Enforcement @ LinkedIn: Data Guard
● Data access through query engines (Trino, Spark) needs to be masked based on
○ Purpose of access
○ Data labels
○ Auxiliary data like member “preferences”

GO TO VIEW > THEME BUILDER TO CHANGE THE FOOTER 8

Data Guard : Data Masking Views
● Views are the interface for policy enforcement

● Data Guard programmatically creates purpose-
specific data-masking views on tables

● Views are accessible through query engines like
Trino and Spark

● Data Guard compiles the View SQL on a table
using the metadata catalog for “data labels” and
policy catalog for “policies”

● Views are refreshed periodically with changes in
policies and data labels

GO TO VIEW > THEME BUILDER TO CHANGE THE FOOTER 9

Data Masking Views : Example

SELECT
T1.id id,
T1.col1 col1,
CASE

WHEN T2.allowEduForAds = true THEN T1.col2
 ELSE NULL

END col2
FROM
 member_profiles T1 JOIN member_settings T2
ON T1.id = T2.id

member_profiles table Labels for member_profiles member_settings

Schema preservingData Guard View SQL for
”Ads” Purpose

Data labeled as “education” should not be used for “Ads” purpose if the user has not consented to it

Consent check

GO TO VIEW > THEME BUILDER TO CHANGE THE FOOTER 10

Views : Masking Granularity

GO TO VIEW > THEME BUILDER TO CHANGE THE FOOTER 11

Using Views

Expressive - Express multiple policies with
projections, filters, joins, UDFs.

Portable - Executable on multiple engines

Agile - Roll-out new views, version, rollback to
previous views

Modular - Can be drop-in replacement to
underlying data

GO TO VIEW > THEME BUILDER TO CHANGE THE FOOTER 12

Data Guard : View Usage
● Users can access purpose-specific views through Trino and Spark

● Next : How to roll this out to make workloads compliant?

GO TO VIEW > THEME BUILDER TO CHANGE THE FOOTER 13

Data Guard:
How is it rolled out?

13

GO TO VIEW > THEME BUILDER TO CHANGE THE FOOTER 14

Expensive & Slow

Expose implementation details

Large Scale Migration?
● Force apps/users to apply the policy by

explicitly adopting Data Guard views

How to roll out views?

GO TO VIEW > THEME BUILDER TO CHANGE THE FOOTER 15

Recreate/Update Existing Views

Error prone

Large Scale Migration?
● Force apps/users to apply the policy by

explicitly adopting Data Guard views

How to roll out views?

GO TO VIEW > THEME BUILDER TO CHANGE THE FOOTER 16

Transparently replaces table access with views

Familiar dataset names
Does Not expose policy details

Cross engine compatibility

Works for future regulation

Dynamically route tables to views at runtime!
Solution → ViewShift

GO TO VIEW > THEME BUILDER TO CHANGE THE FOOTER 17

Trino without ViewShift

GO TO VIEW > THEME BUILDER TO CHANGE THE FOOTER 18

Trino with ViewShift

GO TO VIEW > THEME BUILDER TO CHANGE THE FOOTER 19

Example : Trino Query With ViewShift

GO TO VIEW > THEME BUILDER TO CHANGE THE FOOTER 20

Example : Trino Query With ViewShift

GO TO VIEW > THEME BUILDER TO CHANGE THE FOOTER 21

Other Approaches

● Row Filter/Column Masking
● View + Table Redirection

Future Work

● Open Source
○ Goal : More Generic and OSS friendly
○ Approach : Extend Table Redirection With ViewShift APIs

GO TO VIEW > THEME BUILDER TO CHANGE THE FOOTER

Thank you

22

