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Policy 
Enforcement
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Motivation

Too Much Data!Too Many Policies!

+ ⇒

Overwhelmed 
Data Engineers!

��
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Policy Enforcement @ LinkedIn

Member 
Preferences

Purpose 
LimitationData Collection & 

Labeling
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Member Preferences : Example
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Data Guard:   
How does it work?
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Policy Enforcement @ LinkedIn: Data Guard
● Data access through query engines (Trino, Spark) needs to be masked based on  
○ Purpose of access
○ Data labels
○ Auxiliary data like member “preferences”
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Data Guard : Data Masking Views
● Views are the interface for policy enforcement

● Data Guard programmatically creates purpose- 
specific data-masking views on tables

● Views are accessible through query engines like 
Trino and Spark

● Data Guard compiles the View SQL on a table 
using the metadata catalog for “data labels” and 
policy catalog for “policies”

● Views are refreshed periodically with changes in 
policies and data labels
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Data Masking Views : Example

SELECT 
T1.id id, 
T1.col1 col1, 
CASE 

WHEN T2.allowEduForAds = true THEN T1.col2
      ELSE NULL 

END col2
FROM 
     member_profiles T1 JOIN member_settings T2 
ON T1.id = T2.id

member_profiles table Labels for member_profiles member_settings

Schema preservingData Guard View SQL for 
”Ads” Purpose

Data labeled as “education” should not  be used for “Ads” purpose if the user has not consented to it 

Consent check
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Views : Masking Granularity
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Using Views

Expressive - Express multiple policies with 
projections, filters, joins, UDFs.

Portable - Executable on multiple engines 

Agile - Roll-out new views, version, rollback to 
previous views

Modular - Can be drop-in replacement to 
underlying data
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Data Guard : View Usage
● Users can access purpose-specific views through Trino and Spark  

● Next : How to roll this out to make workloads compliant?
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Data Guard:   
How is it rolled out?
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Expensive & Slow

Expose implementation details

Large Scale Migration?
● Force apps/users to apply the policy by 

explicitly adopting Data Guard views 

How to roll out views?
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Recreate/Update Existing Views

Error prone

Large Scale Migration?
● Force apps/users to apply the policy by 

explicitly adopting Data Guard views 

How to roll out views?
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Transparently replaces table access with views

Familiar dataset names 
Does Not expose policy details

Cross engine compatibility

Works for future regulation

Dynamically route tables to views at runtime!
Solution → ViewShift
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Trino without ViewShift
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Trino with ViewShift
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Example : Trino Query With ViewShift
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Example : Trino Query With ViewShift
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Other Approaches

● Row Filter/Column Masking
● View + Table Redirection

Future Work

● Open Source
○ Goal : More Generic and OSS friendly
○ Approach : Extend Table Redirection With ViewShift APIs
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Thank you
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