
Wvlet: A New Flow-Style Query Language
For Functional Data Modeling and Interactive Data Analysis

December 12, 2024
Trino Summit 2024

Taro L. Saito (Leo)
Senior Principal Engineer at Treasure Data

wvlet

2024: 50th Anniversary of SQL
● SQL was born in 1974

○ SQL’s early design choices paved the way for standardization and commercial adoption
● Since then, applications of SQL have expanded significantly

○ OLAP: From RDBMS to Trino, Hive, Spark, etc.
○ Embedded DB: SQLite (OLTP) -> DuckDB (OLAP with Parquet/Iceberg support)
○ SQL’s user base has grown beyond DBA to include non-engineers

2

https://cacm.acm.org/research/50-years-of-queries/

Trino at Treasure Data (2024)
● Treasure Data has been operating Trino (formerly Presto) as a service since 2014 (10th anniversary!)

○ 3+ million Trino SQL queries processed / day
○ 400+ trillion rows processed / day
○ 3+ billion S3 GET requests / day

■ Reduced from 10 billion requests / day (2023) by partition optimization

● In 2024, we completed the customer traffic migration from Presto (350) to Trino
○ See our migration/test methods in DBTest 2022 paper

● A lot of challenges in managing SQL and helping users (or LLM) write efficient SQL queries

3

What’s Wrong with SQL?
● The syntactic order of SQL doesn’t match the actual data flow

○ A Critique of Modern SQL And A Proposal Towards A Simple and Expressive Query Language (CIDR 24)
○ Even SQL experts find it challenging to debug nested queries

● Lacks essential software engineering features for managing many queries
○ No built-in support for reusing queries
○ No entry points for multi-query optimization

■ e.g., incremental processing and pipeline execution like dbt
○ No built-in debugging or testing capabilities

4

https://www.cidrdb.org/cidr2024/papers/p48-neumann.pdf

Wvlet: Modernizing 50-Year-Old SQL

● SQL has proven to be effective and useful
○ Its natural-language based syntax has gained widespread

adoption

● Redesigned SQL to be more intuitive and functional

● Wvlet: a new flow-style query language for weaving data
○ Pronounced as weave-let
○ Queries start with “from” for intuitive data flow

● Functional
○ Wvlet queries are reusable and composable like functions

● Cross SQL engine support
○ Generates SQL for Trino, Hive, DuckDB, etc.

● Try Wvlet on your web browser https://wvlet.org/
○ No installation is required

5

Command-line editor of Wvlet (wv)

https://wvlet.org/

Wvlet Playground wvlet.org

6

Wvlet Query Compiled SQL

Query Result

http://wvlet.org/

Wvlet: Architecture
● From query (.wv) files, Wvlet compiler produces logical plans, execution plans, and SQL statements
● Logical Plans

○ Tree-representations of relational operators (e.g., scan, filter, projection)
■ Sort(Join(Filter(TableScan(...)), TableScan(...)))

● Execution Plans
○ A sequence of steps to execute SQL and other programs

■ ExecutePlan(ExecuteSQL(query), ExecuteTest(expr), ExecuteCommand(expr), …)

7

Query Rewrite Framework

Subquery Materialization

Query Fusion

Differentially Private SQL

Incremental Processing

Generate SQL

Non SQL-Extension

Query OptimizerQuery Compiler

Logical Plans

Flow-Style Query

Execution Plans

Query Runner

Table Functions

Table Data
Import/Export

Query Library

Composable Data Models

Query.wv

Static Type Analysis

Library Code Assembly

wvlet

S3

Wvlet: Analyze As You Write
● Flow-style queries

○ Each line is a single operation

● Peek the data and schema at any point
○ A subquery becomes a range of lines

in the query text

● Easy to extend
○ Queries can be reused for further

analysis

8

Related Work: GoogleSQL Pipe Syntax (2024)
● SQL Has Problems. We Can Fix Them: Pipe Syntax

In SQL (VLDB 2024)
● Extended SQL syntax with pipe operator (|>)

○ Available in ZetaSQL, an open-source SQL
parser, used in Google products, e.g., BigQuery,
F1, etc.

● Other flow-style languages:
○ PRQL, Microsoft Kusto, DryadLINQ, etc.

9

SQL

SQL + Pipe Syntax

https://research.google/pubs/sql-has-problems-we-can-fix-them-pipe-syntax-in-sql/
https://research.google/pubs/sql-has-problems-we-can-fix-them-pipe-syntax-in-sql/
https://github.com/google/zetasql/blob/master/docs/pipe-syntax.md

Wvlet: Relational Operators (online reference)

● In Wvlet, all keywords must be lower-case letters
○ For consistency and reducing implementation efforts

● Same operators with SQL:
○ from, select, join, where, order by, limit, etc.

● Aggregation in Wvlet
○ group by k1, k2, … agg …
○ agg (aggregation expr), ..

■ Report group-by keys and aggregation
expressions: k1, k2, …, expr1, expr2, …

○ group by k1, k2, … where …
■ equivalent to group by … having …

10Basic Flow of Wvlet Queries

Aggregation Query

https://wvlet.org/wvlet/docs/syntax/relational-operators

Wvlet: Column At A Time Manipulation
● For minimizing your typing effort

● add (expr) as …
○ Add a new column

● rename (column) as (new name)
● exclude (column), …
● shift (to left/right)? column, ….

○ Reorder columns for readability

● Changing a single column or its order in
SQL is not easy as we need to
enumerate all columns

11

Wvlet

SQL

Wvlet: Additional Relational Operators
● Refined from SQL

○ concat = UNION ALL in SQL
■ Most of SQL users wrongly use UNION (duplicate

elimination) where UNION ALL (concatenate two
relations) is appropriate.

○ dedup = select distinct * (= duplicate elimination)

● Utility operators
○ transform: Update only subset of columns
○ sample n
○ pivot

■ Transform column values into individual columns
■ trino#1206 (Remains open since 2019)
■ Wvlet can run multiple SQL queries, so it’s relatively

easy to implement static/dynamic pivot

12

Wvlet

SQL

https://github.com/trinodb/trino/issues/1206

Wvlet: Update Statements
● save as

○ A shorthand notation for:
■ DROP TABLE IF EXISTS tbl; CREATE TABLE tbl

AS SELECT …
● Most frequently used pattern in Treasure

Data
■ CREATE OR REPLACE TABLE AS SELECT

● Available in DuckDB, Trino 431 (Since Oct
2023)

○ For DuckDB backend, you can save query results as
Parquet/JSON files

● append to
○ Almost same with INSERT INTO, but it clarifies

append-only semantics (no overwrites)
■ Useful when using versioned tables like

Iceberg/Delta Lake

● delete
○ Delete selected rows from the table

13

Wvlet

SQL

https://github.com/trinodb/trino/pull/13681

Function Chaining via Dot Operator
● In SQL, every function is global

○ SUM(x), AVG(x), COUNT(*), ROUND(x, 1), …
○ A lot of cursor movements are necessary to

apply functions in SQL

● Wvlet supports chaining functions with dot
operator as in modern programming languages:

○ e.g., x.sum, x.avg.round(2), _.count
○ _ (underscore) refers to the output from the

previous operator

14

Wvlet

SQL

Wvlet Query = A Function for Building A Data Model
● In Wvlet, a query defined as a data model that can be reused at ease (Query Templates)
● Composable

○ You can add more relational operators (e.g., where, join) to data models
● Reusable

○ Models accept user parameters (= function arguments)

15

Reuse Queries

Testing Queries
● Wvlet Test Syntax

○ Useful for verifying resulting
schema and results

● Wvlet is tested with Wvlet
○ Wvlet spec queries
○ Covers all 22 TPC-H queries

16

https://wvlet.org/wvlet/docs/syntax/test-syntax/
https://github.com/wvlet/wvlet/tree/main/spec

Debugging Queries
● Debug operator can be used for checking intermediate query results
● ExecutionPlanner generates multiple execution paths for debug and regular query evaluation

○ Debug path: Query before debug statement -> debug query
○ Regular path: Query without debug statement

17

Regular Query Result

Debug Query Result

Test Result

Wvlet Internals: Compiler
● Compiler phases: Parser -> SymbolLabeler -> TypeResolver -> Rewriter -> ExecutionPlanner -> GenSQL

○ CompilationUnit holds the source text, untyped logical plan, typed logical plan, execution plan, etc.
● With AirSpec testing library, you can adjust the log levels of individual components

○ -L (class name pattern)=(log level) option

18

Tokens

LogicalPlan
(After typing)

Generated SQL

Query Result

Query (.wv)

https://wvlet.org/airframe/docs/airspec/

Wvlet Development Roadmap
● Roadmap is maintained at GitHub Project page.

○ Planning milestones for about every 3 months
○ Versions will be YYYY.(milestone month).(patch) (See #170 for the versioning scheme)

● Release 2024.9
○ ✅ Flow-style query language design and compiler

■ Including scanner, parser, typer, tree rewrite framework, execution planner, SQL generator, etc.
○ ✅ DBMS Connector (DuckDB, Trino)
○ ✅ wv: Interactive command-line editor (REPL)
○ ✅ Installer (Homebrew)
○ ✅ Web UI, Playground (Monaco Editor with DuckDB-Wasm)

● Release 2025.1
○ Model management

■ Generate dependent model materialization plan, like dbt
■ GitHub integration

○ Compiler plugins for advance optimization
■ Incremental processing, query fusion, etc.

○ Language SDKs
■ Python, Rust, C/C++, Java, etc.

○ SQL to Wvlet converter

19

https://github.com/orgs/wvlet/projects/2/views/2
https://github.com/wvlet/wvlet/issues/170

Summary
● Designed Wvlet, a new open-source

flow-style query language

● Addresses challenges in 50-year-old
design of SQL

○ Leverage good sides of SQL
■ natural-language like syntax

○ Intuitive syntax for data flow
○ Reusability
○ Extensibility

● Website: https://wvlet.org/
● GitHub: https://github.com/wvlet/wvlet

20

https://wvlet.org/wvlet/
https://github.com/wvlet/wvlet

21

22

Appendix

Wvlet Internals: Standard Library
● Wvlet defines standard data types and functions, which define how to generate SQL

○ example: x.to_int.round(1) => cast(x as bigint).round(1) => round(cast(x as bigint),1)

23

Wvlet Internals: DBMS Specific Functions
● Function can have different implementations depending on the target databases (Trino/Hive/DuckDB, etc.)

○ x.count_approx_distinct
■ Trino: approx_distinct(x)
■ DuckDB: approx_count_distinct(x)

● Works for consuming the differences between SQL dialects and UDFs

24

Extending Wvlet
● Compiler plugins (to be designed #185)

○ Add a custom rule set to optimize logical plans and execution plans.
■ Optimization rules: Query fusion optimization, subquery materialization, incremental processing, etc.

○ Security rules (e.g., forbidding local file access operators at the cloud environment)
● Table functions receive table-value data and output table value data

○ Not limited to SQL, we will be able to invoke ML algorithms, calling Embulk, or issuing SQL queries to
different query engines by generating such execution plans.

25

Query Rewrite Framework

Subquery Materialization

Query Fusion

Differentially Private SQL

Incremental Processing

Generate SQL

Non SQL-Extension

Query OptimizerQuery Compiler

Logical Plans

Flow-Style Query

Execution Plans

Query Runner

Table Functions

Table Data
Import/Export

Query Library

Composable Data Models

Query.wv

Static Type Analysis

Library Code Assembly

wvlet

S3

https://github.com/wvlet/wvlet/issues/185
https://www.amazon.science/publications/computation-reuse-via-fusion-in-amazon-athena
https://github.com/xerial/streamdb-readings?tab=readme-ov-file#incremental-processing-with-materialized-views
https://arxiv.org/abs/2009.13631

Writing A Compiler From Scratch? Leverage LLMs
● Developing a compiler is a challenge with

known difficulties and known solutions
○ = solved problem

● By leveraging LLM-based tools like GitHub
Copilot, we can accelerate the development

● LLMs excel at utilizing well-known solutions
from open-source code.

26

GitHub Copilot suggests code in a second

Indicate what you want to code

Wvlet is easy to learn, even for Large Language Models (LLMs)
● An LLM Agent, created from Wvlet

documentation, can successfully
convert TPC-H SQL queries into
Wvlet syntax

○ Wvlet: Query Syntax
documentation (link)

27TPC-H Q1 in Wvlet

Original TPC-H
Q1 SQL

https://wvlet.org/wvlet/docs/syntax/

wv: Interactive Query Editor
● Available with brew install wvlet/wvlet/wvlet

○ Supports Trino, DuckDB via profile settings
● Shortcut keys for checking intermediate schema

and results
○ ctrl-j, ctrl-d (describe the schema at the line)
○ ctrl-j, ctrl-t (test run the subquery upto the line)
○ ctrl-j, ctrl-r (run the whole query)

28

Intermediate Table Schema

Subquery Result

Design Philosophy of Wvlet
● Link: https://wvlet.org/wvlet/docs/internal/design

● Matching syntax order with data flow
○ Typing from left-to-right, top-to-bottom order

● Use only lowercase keywords
○ Forbid mixing SELECT and select

● One operation at a time
○ SQL’s SELECT operator is too powerful
○ Breaking down SELECT statement into simple

operators (add, transform, exclude, shift, etc)
● Human and machine friendly-syntax

○ Query lines form subqueries
■ Trailing comma support is essential to correctly

extract subqueries in an executable form
○ Enable in-query data/schema inspection

29

SQL

Wvlet

https://wvlet.org/wvlet/docs/internal/design

Related Work: SaneQL (Thomas Neumann, et al. 2024)
● The syntactic order of SQL doesn’t match with the semantic order of data processing
● Redesigned SQL by using a function chain syntax

○ A Critique of Modern SQL And A Proposal Towards A Simple and Expressive Query Language (CIDR 24)

30

https://www.cidrdb.org/cidr2024/papers/p48-neumann.pdf

Related Work: PRQL (Prequel)
● Pipelined Relational Query Language (Since 2022) https://prql-lang.org/
● Written in Rust, compiling PRQL to SQL

○ Syntax is a bit far from SQL, more like DataFrame API or programming language syntax

31

https://prql-lang.org/

