w Wvlet: A New Flow-Style Query Language

wvlet For Functional Data Modeling and Interactive Data Analysis

December 12, 2024
Trino Summit 2024

Taro L. Saito (Leo)

Senior Principal Engineer at Treasure Data
W TREASURE DATA

2024: 50th Anniversary of SQL

SQL was born in 1974

o SQLU’s early design choices paved the way for standardization and commercial adoption
Since then, applications of SQL have expanded significantly

o OLAP: From RDBMS to Trino, Hive, Spark, etc.
o Embedded DB: SQLite (OLTP) -> DuckDB (OLAP with Parquet/Iceberg support)
o SQL’s user base has grown beyond DBA to include non-engineers

research and advances

i

¥ TREASURE DATA

DOI:10.1145/3040887

A of the of the
industry over the past half century, and why
the i i

by E.F. Codd have proven to be so resilient
over several decades.

the 1890 UsS. census. Punched cards
had a successful 65year product
life until they were largely replaced
by magnetic tapes in the 1950s. In
the mid-20" century, data was typi-
cally stored on a magnetic tape and
dedicated to a specific application.
A tape might, for example, be used

BY DONALD CHAMBERLIN

by an application.
Periodically, maybe once a weck, the
i

50 Years
of Queries

E.F. copD’s “A Relational Model of Data for Large
Shared Data Banks”*" is one of the most influential
papers in all of computer science. In it, Codd defined
concepts that are still in widespread use today,
more than five decades later, including defining the
theoretical foundation of the relational database
industry.

When Codd's paper appeared in C

b would read the
tape sequentially, applying updates
as it went along and producing a new,
updated inventory tape. (As a college
student in 1964, T had 2 summer job
as a computer operator, running jobs
like this.)

‘The advent of magnetic disks, in-
troduced with the IBM RAMAC in
1956, had a radical impact on how
data was stored and processed. It was
no longer necessary for applications
to process data sequentially, since
data items stored on disks could be
accessed directly in any order. This
gave rise to a new wave of innovation
in how data should be organized on
disk

In the 19605, a team of IBM engi-
neers working on a NASA contract
developed a disk-based information
storage and retrieval system for use
in the Apollo moon landing program.

X key insights

= Theretational dsta model, proposed by
E.F.Codd n 1870, i the most widely

of the ACM in June 1970, 1 was a student member of
ACM, but I didn’t receive the issue right away. Iwas
driving cross-country from Stanford University to take
a summer job at IBMs T.J. Watson Research Center

in Yorktown Heights, New York. Before long, my
summer job turned into a permanent IBM job, and T
joined a group that was looking into the future of data
management. My first task was to get up to speed on
the current state of the art.

= SEQUEL (later shortened to SQL) was
ed n 1974 a5 a Language for
been

solc]

E. F. Copp
IBM Research Laboratory, San Jose, Californt

Future users of lorge dota banks must be pi
having 1o know how the data is organized in the.
ntemal representation). A pr

ORACLE

. F

The Programmer
as Navigator

& _ I:._.
A Relational Model of Data for

Large Shared Data Banks

T clsse: (moare Cosnrie)

s e (e €

https://cacm.acm.org/research/50-years-of-queries/

Trino at Treasure Data (2024)

e Treasure Data has been operating Trino (formerly Presto) as a service since 2014 (10th anniversary!)
o 3+ million Trino SQL queries processed / day
o 400+ trillion rows processed / day

o 3+ billion S3 GET requests / day f : - trl nO
m Reduced from 10 billion requests / day (2023) by partition optimization b

e In 2024, we completed the customer traffic migration from Presto (350) to Trino
o See our migration/test methods in DBTest 2022 paper
e Alot of challenges in managing SQL and helping users (or LLM) write efficient SQL queries

TREASURE
DATA

DBTest 22, June 17, 2022, Philadelphia, PA, USA Taro and Naoki et al.

Journey of Migrating Millions of Queries on The Cloud

Taro L. Saito, Naoki Takezoe, Yukihiro Okada, Takako Shimamoto
Dongmin Yu, Suprith Chandrashekharachar, Kai Sasaki, Shohei Okumiya
Yan Wang, Takashi Kurihara, Ryu Kobayashi, Keisuke Suzuki
Zhenghong Yang, Makoto Onizuka
Treasure Data
Mountain View, CA, USA

0o [o] &

Chtrion (e BT eyt ey
> & " g Y ~

' | va— % =

9 () Simulator

meswe e n (@l | — =

p Torr— S

Build Benchmarks

ABSTRACT

Treasure Data is processing millions of distributed SQL queries
every day on the cloud. Upgrading the query engine service at this
Gkt dalnging b dto migrate all o i

As of February 2022, Treasure Data is processing more than
1.5 million SQL queries every day coming from 5,000+ users in
various regions, including US, EU, Japan, Korea, etc. The number of

rocessed record: d 1l day, which i I

queries of the customers to a new version while preserving the
correctness and performance of the data processing pipelines. To
ensure the quality of the query engines, we utilize our query logs
to build customer-specific benchmarks and replay these queries

to processing 1.2 billion rows/sec. Our job as a service provider s
preserving the behavior of these SQL queries while maintaining the
underlying query engine versions up-to-date so that our custormers
can keep processing their data analysis pipelines without worrying
about maintaining the data platform.

with real customer data in a secure pre-prod
To simulate millions of queries, we need effective minimization
of test query sets and better reporting of the simulation results to
proactively find incompatible changes and performance regression
of the new version. This paper describes the overall design of our
system and shares various challenges in maintaining the quality of
the query engine service on the cloud.

ACM Reference Format:

Tazol Saitg Nagki Takezoe Yukihi i Dy

[cs.DB] 17 May 2022

Maintaining A Data Platform on the Cloud. Treasure Data provides
query engine services on the cloud by integrating open-source
(05) distributed SQL query engines Trino (formerly known as
Presto) (2) and Hive [1] on top of Amazon Web Scrvice (AWS).
Our target customers (e.g., marketers) are not dedicated system
engincers, so they have a strong demand to have a data platform
which is casy to use and has no need to maintain by themsclves.

W TREASURE DATA

‘ fluentd »—-«%

.
" B
embulk " PlazmabB

Customer-Specific
Benchmarks.

Figure 1: The architecture of Treasure Data, including PlazmaDB, query engines, and query simulator

format of query logs changes over time. It is also important to
extract typical workloads of individual customers to reduce the
number of queries to test. Our approach for these problems is
using our own service for collecting and analyzing query logs. An
analysis of our historical query logs revealed that more than 97%
of queries of our customers are recurrent ones, running hourly,
daily, weekly, monthly, etc. By clustering such recurrent querics,
we can significantly reduce the query set size fed to our query
simulator. In addition, to protect the privacy of the customer data,
the query simulator obfuscates the query results by embedding a
checksum computation process and ensures the containment of all
ate data within a pre-production envi which is
isolated from the production customer traffic.
Simulating customer-specific query patterns has enabled us to
ill the gap of responsibilities between service providers like Trea-

benchmark consisting of 60k public workbooks to test their HyPer
in-memory DBMS [16]. Such static benchmarks, however, are not
always a representative workload of customers. Recent approaches
for testing pecific workloads include Snowtrail for test-
ing Snowflake SQL queries [20] and DIAMetrics [5), which also
covers non-SQL workloads in Google. A formal framework for con-
structing a representative workload from query logs is studied in
4], which requires the expert knowledge to select features to be
tested. In this paper, we argue the importance of collecting query
logs even for testing emerging OSS query engines using unsuper-
vised methods. In this regard, we shed lights to the system for
collecting query logs and practical applications of these query logs
for monitoring and testing query engines. Morpheus (13] reported
a method for defining SLOs of query performance induced from
large query graphs. In this paper, we present a simple approach for

What's Wrong with SQL?

e The syntactic order of SQL doesn’t match the actual data flow

o A Critique of Modern SQL And A Proposal Towards A Simple and Expressive Query Language (CIDR 24)
o Even SQL experts find it challenging to debug nested queries

SELECT r.d, =
T sum(r.e) aS. S~ _——+join T©
= rank() ove_r;.w fiter |G
O |FROM r, s— —*aggregation | g
?é WHERE r.a = s.b— S c~filter g
= AND r.c < 157 “ewindow %
=, GROUP BY r.d - ~<:sorl. =
) |HAVING sum(r.e) L project o

ORDER by r.d—" 7]

e Lacks essential software engineering features for managing many queries
o No built-in support for reusing queries
o No entry points for multi-query optimization
m e.g., incremental processing and pipeline execution like dbt
o No built-in debugging or testing capabilities

¥ TREASURE DATA

https://www.cidrdb.org/cidr2024/papers/p48-neumann.pdf

Wvlet: Modernizing 50-Year-Old SQL

wv> -- Scan a data file

e SQL has proven to be effective and useful | from 'lineitem.parquet’
_]] -- Apply a filtering condition

o Its nat.ural language based syntax has gained widespread e T Ak 100

adoption -- Aggregate by columns

group by 1_returnflag, 1_linestatus
. : o ; -- Compute aggregated expressions
e Redesigned SQL to be more intuitive and functional agg
1_quantity.sum as gty,
1_extendedprice.sum as price,

e \Whvlet: a new flow-style query language for weaving data lggri':countigvg-mund(@ as discount_avg,
o Pronounced as weave-let order by"fé; dZsc

o Queries start with “from” for intuitive data flow -- Remove an unnecessary column
exclude discount_avg

-- Save query with an alias
e Functional select as stats

o Wuvlet queries are reusable and composable like functions 2
L_returnflag | 1_linestatus price
: strin strin decimal(38,2 decimal(38,2
e Cross SQL engine support - - 08,9 S

o Generates SQL for Trino, Hive, DuckDB, etc. 732001.00 | 1026373433.61
365309.00 | 511907681.35

364109.00 509533926.17
e Try Wvlet on your web browser 8642.00 | 11948259.73

o No installation is required

Command-line editor of Wvlet (wv)

TREASURE DATA 5

https://wvlet.org/

Wvlet Playground

Query Syntax GitHub

Playground U0 amplewy
Examples from lineitem

00_sample.wv select * from

add.wv where 1_guantity > 0.0 (select 1_linestatus, sum_gty, sum_ext_price from
agg.wv (select 1_returnflag as 1_returnflag, 1_linestatus as
column_ops.wy group by 1_returnflag, 1_linestatus 1_linestatus, sum(l_quantity) as sum_gty, sum
join.wv 1_extendedprice) as sum_ext_price
agg from

1_quantity.sum as sum_gty, select from lineitem

1_extendedprice.sum as sum_ext_price where 1_quantity > 0.0

group by 1_returnflag, 1_linestatus))

exclude 1_returnflag order by sum_qty desc

list_schemas.wv
list_tables.wv
model.wyv
model_with_param.wv
raw_sqgl.wv

scan.wv
shift_columns.wv
string_interpolation.wv
tpch_gl.wv
tpch_q2.wv Wvlet Query Compiled SQL
tpch_q3.wv

tpch_schema.wv

values.wv

order by sum_qty desc

1_linestatus sum_qty sum_ext_price
string decimal(38,2) | decimal(38,2)

76525100 107286230210
38144900 53459444535
38045600 53234821165

897100 1238480137

Query Result

TREASURE DATA

http://wvlet.org/

Wvlet: Architecture

e From query (.wv) files, Wvlet compiler produces logical plans, execution plans, and SQL statements
e Logical Plans

o Tree-representations of relational operators (e.g., scan, filter, projection)
m Sort(Join(Filter(TableScan(...)), TableScan(...)))

e Execution Plans

o A sequence of steps to execute SQL and other programs
m ExecutePlan(ExecuteSQL(query), ExecuteTest(expr), ExecuteCommand(expr), ...)

Generate SQL Q DuckDB
/

‘-
°g

&> trino

Query.wv Logical Plans Execution Plans

Flow-Style Query |:> Query Compiler |:> Query Optimizer |:> Query Runner

Query Rewrite Framework Table Functions

Subquery Materialization

—
™

Query Library Library Code Assembly

Incremental Processing Non SQL-Extension@
= 1 GItHub w WVI et Query Fusion Table Data

2\

Differentially Private SQL Import/Export

outhon” @ embulk

W TREASURE DATA = 7

&

Wvlet: Analyze As You Write

e Flow-style queries
o Each line is a single operation

e Peek the data and schema at any point
o A subquery becomes a range of lines
in the query text

e FEasy to extend
o Queries can be reused for further
analysis

TREASURE DATA 8

Related Work: GoogleSQL Pipe Syntax (2024)

e SQL Has Problems. We Can Fix Them: Pipe Syntax

In SQL (VLDB 2024) SELECT c_count, COUNT(*) AS custdist
e Extended SQL syntax with pipe operator (|>) s
.) (SELECT c_custkey, COUNT(o_orderkey) c_count
o Available in ZetaSQL, an open-source SQL FROM customer
parser, used in Google products, e.g., BigQuery, LEFT OUTER JOIN orders ON c_custkey = o_custkey
F1. etc AND o_comment NOT LIKE '%unusual¥%packages%'
; 5 GROUP BY c_custkey
e Other flow-style languages:) AS c_orders saL
o PRQL, Microsoft Kusto, DryadLINQ, etc. GROLP" BY ‘c_count

ORDER BY custdist DESC, c_count DESC;

| SQL Has Problems. We Can Fix Them: ‘
Pipe Syntax In SQL

Jeff Shute Shannon Bales ~ Matthew Brown Jean-Daniel Browne Brandon Dolphin ‘
Google, Inc. Google, Inc. Google, Inc. Google, Inc. Google, Inc.
e i olne Dowgapetegee ‘ FROM customer
ELBL
el R Ll |>|LEFT OUTER JOIN orders ON c_custkey = o_custkey
- pipes paper@googlecom AND o_comment NOT LIKE '%unusual%packages%'

ABSTRACT SQL Mi i rating away from existing SQL ecosystems is expensive
SQL has been extremely successful as the de facto standard lan- ealing
e for working am dat

|>| AGGREGATE COUNT (o_orderkey) c_count
GROUP BY c_custkey

105t a solu-

3 pandipn wods

rell in of e Kusto's KQL(5) anc s like Apache > * s .

Bl eshow e s e 50 o vl 2] AGGREGATE | COUNT.(x) AS:custcist SQL + Pipe Syntax
- s n o iyt i GROUP BY c_count

QL's
problems by extending sgr. h\spmd by ern orks wel Expressing

in other modern data languages, we added piped data flow syntax _ With pipe syntax, operations can be compos: sed anbitraily in any I> ORDER BY custdist DESC, c_count DESC;

W TREASURE DATA

https://research.google/pubs/sql-has-problems-we-can-fix-them-pipe-syntax-in-sql/
https://research.google/pubs/sql-has-problems-we-can-fix-them-pipe-syntax-in-sql/
https://github.com/google/zetasql/blob/master/docs/pipe-syntax.md

Wvlet: Relational Operators () - cron Linetcen
| group by 1_shipmode .
||agg _.count, 1_quantity.sum;

e In Wuvlet, all keywords must be lower-case letters Lshipnode | count_starO | sunCl_quantity)
o For consistency and reducing implementation efforts string long decimal(38,2)
219565.00

_ 8482 217969.00

e Same operators with SQL: 219015.00
= . b 223909.00

o from, select, join, where, order by, limit, etc. 216331.00

221528.00
217810.00

e Aggregation in Wvlet
o group by ki, k2, ... agg ...

A A i
o agg (aggregation expr), .. ggregation Query
(] Report group-by keys and aggregation M ... -- Scan the input data
expressions: k1, k2, ..., exprl, expr2, ... | w:ere -- my fige;;ngl; conditifqﬁ ‘ x
where ... -- iona ply more filtering conditions
o group by k1, k2, ... where ... add ... as ... -- Add new colums
~ equivalent to group by ... having ... transform ... -- Transform a subset of columns

group by ... -- Grouping rows by the given columns

agg ... -- Add group aggregation expressions,
(e.g., _.count, _.sum)

where ... Apply filtering conditions for groups
(e.g., HAVING clause in SQL)

exclude ... Remove columns from the output

shift ... Shift the column position to the left

select ... Select columns to output

order by ... Sort the rows by the given columns

limit ... Limit the number of rows to output

Basic Flow of Wvlet Queries 10

https://wvlet.org/wvlet/docs/syntax/relational-operators

Wvlet: Column At A Time Manipulation

e For minimizing your typing effort

add s"${1l_shipmode}:${l_shipinstruct}" as label
e add (expr) as ... shift label, 1_returnfllag

o Add anew column
rename (column) as (hew name)
exclude (column), ...

shift (to left/right)? column, il s v
o Reorder columns for readability REG AIR:TAKE BACK RETURN TAKE BACK RETURN

AIR:NONE NONE
: . . : FOB :NONE NONE
e Changing a single column or its order in

SQL is not easy as we need to
enumerate all columns

-- wvlet version:2024.9.9, src:@1IBYY824NEXQOBTCORKYEREFG.wv
select * from

(select label, 1_returnflag, 1_shipmode, 1_shipinstruct, 1_quantity, 1_tax, 1_shipdate, 1_suppkey, 1_orderkey, 1_commen
t, 1_linestatus, 1_receiptdate, 1_linenumber, 1_extendedprice, 1_partkey, 1_discount, 1_commitdate from

(select *, concat(concat(concat(concat('', 1_shipmode) , ":') , l_shipinstruct) , '') as label from

(select * from lineitem
where 1_returnflag = 'N')))
limit 5 (QueryExecutor.scala:319

Wvlet: Additional Relational Operators

e Refined from SQL wv> from lineitem
o concat=UNION ALL in SQL sl el s
m Most of SQL users wrongly use UNION (duplicate concat {. :
elimination) where UNION ALL (concatenate two :;g:elﬁﬁggrnﬂog o

relations) is appropriate. limit 3
o dedup = select distinct * (= duplicate elimination)

}
shift 1_returnflag

e Utility operators

o transform: Update only subset of columns -- wvlet version:2024.9.9, src:@1IBYX6C240NPZZIZR3YOTIYAD.wv
select 1_returnflag, 1_shipmode, 1_shipinstruct, 1_quantity, 1_tax, 1_

shipdate, 1_suppkey, 1_orderkey, 1_comment, 1_linestatus, 1_receiptdat

o samplen
e, 1_linenumber, 1_extendedprice, 1_partkey, 1_discount, 1_commitdate

o inOt from
. o L C
n Transform column values into individual columns (select * from
" 4 (select * from lineitem
[| (Remalns open since 201 9) where 1_returnflag = 'N')
. ’ oy . limit 3)
= Wvlet can run multiple SQL queries, so it’s relatively union all

easy to implement static/dynamic pivot

(select * from
(select * from lineitem
where 1_returnflag = 'A')
limit 3)))

TREASURE DATA 12

https://github.com/trinodb/trino/issues/1206

Wvlet: Update Statements

® save as
o A shorthand notation for:
m DROP TABLE IF EXISTS tbl; CREATE TABLE tbl

AS SELECT ...
e Most frequently used pattern in Treasure
Data
m CREATE OR REPLACE TABLE AS SELECT
e Available in DuckDB, (Since Oct
2023)

o For DuckDB backend, you can save query results as
Parquet/JSON files
e append to
o Almost same with INSERT INTO, but it clarifies
append-only semantics (no overwrites)

m Useful when using versioned tables like
Iceberg/Delta Lake

e delete
o Delete selected rows from the table

TREASURE DATA

wv> from lineitem
where 1_returnflag = 'N’
Limit 10

save as tmp_table;

Executing SQL:
create or replace table tmp_table as
-- wvlet version:2024.9.9, src:01JBYYKEVBCKS8HTZEBZGAMYVZB.wv
select * from
(select * from lineitem
where 1_returnflag = 'N')
limit 10

13

https://github.com/trinodb/trino/pull/13681

Function Chaining via Dot Operator

e In SQL, every function is global
o SUM(x), AVG(x), COUNT(*), ROUND(x, 1), ...
o Alot of cursor movements are necessary to
apply functions in SQL

e Whvlet supports chaining functions with dot

operator as in modern programming languages:

o e.g., x.sum, x.avg.round(2), _.count
o _ (underscore) refers to the output from the
previous operator

select

1_shipmode,

round(avg(l_guantity), 1),

sum(l_guantity),
count(*)
from lineitem
gﬁoup by 1_shipmode

wv> from lineitem
| group by 1_shipmode
| agg ‘
1_quantity.avg.round(1),
| 1_quantity.sum,
_.count,

roundCavg(l_quantity), 1)
double

sum(l_quantity)
decimal(38,2)

219015.00
219565.00
217969.00
221528.00
217810.00
216331.00
223909.00

count_star()
long

14

Wvlet Query = A Function for Building A Data Model

e InWhvlet, a query defined as a data model that can be reused at ease (Query Templates)

e Composable

o You can add more relational operators (e.g., where, join) to data models

e Reusable
o Models accept user parameters (= function arguments)

wv> -- define a reusable query for analyzing cost
| model service_cost =
from cost_components
where time.within('-3M/now')
where aws_account_owner != 'security’ Reuse Queries
add service_name = coalesce(user_service, cost_category)

pivot on month in ('2024-06', '2024-07', '2024-08')
group by service_name
agg cost.sum.round(1)

|
|
|
|
| add td_time_string(time, 'M!') as month
|
|
|
| end;

wv> from service_cost
| where service_name like 'trinoX';

service_name 2024-06 | 2024-07 | 2024-08
string double double double

trino-coordinator 3415.3 3983.4 4402.7

trino-worker 33776.7 | 58363.2 | 78516.8

wv> from service_cost
| where service_name like 'hive¥';

service_name 2024-06 | 2024-07 | 2024-08
string double double double

hivep 174.9 164.4 188.4

hive-query-simulator 39.6 26.9 28.6

15

Testing Queries

° {"id":1, "name": “alice”, "age": 10 },

o Useful for verifying resulting {"1d":2, “name": “bob", "age": 24 1,
{"id":3, "name": "clark", "age": 40 }
schema and results

e \Whvlet is tested with Wvlet

o) from 'person.json'’
o Covers all 22 TPC-H queries -- Test the query size and schema
test _.size should be 3
test _.columns should be ['id', 'name', 'age'l
wvlet / spec /tpch/ (O ' '
@ xerial editor (feature #265): show query command (#334) v/ test _.columns should contain 'name
T @ xerial lang (feature): test syntax as a sit test _.columns should not contain 'address'

wvlet / spec / basic/ (&

Name
catalog

-~ Test the query output. Surrounding white spaces will be trimmed:

duckat i test _.output should be """
update data
(P] (V— |
0 sanre test | i l name] age |
[agg_tpe_resolvewv
long strin lon
e D | | g | tong |
[backquote-interpolationwy O qlowv .
| 1| alice | 10 |
[backquote.wv O qtwy
[books.json 2 l bob] 24 |
12
D concatow B mam 3 | clark |
[debug-savewv O a13wv
[debugwv O qiawv
O q15mv

nun

TREASURE DATA

https://wvlet.org/wvlet/docs/syntax/test-syntax/
https://github.com/wvlet/wvlet/tree/main/spec

Debugging Queries

e Debug operator can be used for checking intermediate query results

e ExecutionPlanner generates multiple execution paths for debug and regular query evaluation
o Debug path: Query before debug statement -> debug query
o Regular path: Query without debug statement

{"id":1, "name": "alice", "age": 10 },

"2 " " " " " " :9)stest o hould b 1, "ali ", 10
{"id":2, "name": "bob", "age": 24 }, AEF oS SN be [, aticesy 100
{"1id":3, "name": "clark", "age": 40 }

person.json’ 1 rows
debug {

where id = 1 S P
save as debug_f'esu1t_0123 long string | long Debug Query Result

]

Regular Query Result

where id = 2 o

]
from debug_result_0123 [ok]: 1 was equal to 1 (OLJAXGCOOFFAZOZNHANVWZSBI4.wv:8:13) Test Result

test -.Slze ShOU]‘d be 1 - . - [ok]: [[1, alice, 1@]] was equal to [[1, alice, 10]] (@1IAXGC@IFFAZOZNHAWVWZSBI4.wv:9:13)
test _.rows should be [[1, "alice", 10]]

Wvlet Internals: Compiler

e Compiler phases: Parser -> SymbolLabeler -> TypeResolver -> Rewriter -> ExecutionPlanner -> GenSQL
o CompilationUnit holds the source text, untyped logical plan, typed logical plan, execution plan, etc.

e With testing library, you can adjust the log levels of individual components
o -L (class name pattern)=(log level) option

wv> from 'books.json’
group by author

| agg _.count;

TREASURE DATA

sbt:wvlet> ~runner/testOnly *BasicSpec -- -1 debug -L *Scanner=debug -L *GenSQL=trace agg _rel
[info] compiling 1 Scala source to /Users/leo/work/git/wvlet/wvlet-api/.jvm/target/scala-3.3.4/classes ...
BasicSpec
debug [WvletScanner] Indented(@,null)
debug [WvletScanner] Indented(@,null)
debug [WvletScanner] Indented(@,null)
debug [WvletScanner] Indented(@,null)
debug [WvletScanner] Indented(@,null)
debug [WvletScanner] Indented(@,null)
debug [WvletScanner] Indented(@,null)
debug [WvletScanner] Indented(@,null)
debug [WvletScanner] Indented(@,null)
trace [GenSQL]
[plan] runner / Test / testOnly 1s
[Agg [34..45)] < t167Cauthor:string, _:array(_t123(id:string, title:string, author:string, year:long, genre:string)))> => <_t168(author:
string, <empty>:?7)7>
- author:stri
- <empty>:?7? sql”c
[GroupBy [18..33)] < t123(id:string, title:string, author:string, year:long, genre:string)> => < t167(author:string, _:array(_t123(id:
string, title:string, author:string, year:long, genre:string)))>
- author
[JSONFileScan [5..17)] => < t123(id:string, title:string, author:string, year:long, genre:string)> Logica|P|an

[su] (After typing)
-- wvlet version:2024.9.8+1-c70@bcaa, src:agg_rel.wv
select author as author, count(*)

]
from 'spec/basic/books.json’ Generated SQL
group by author

FROM: from
STRING_LITERAL: books.json
1 GROUP: group
BY: by
IDENTIFIER: author
] AGG: agg
7 UNDERSCORE: _ Tokens
DOT: .
5] IDENTIFIER: count

gwu%r\rr\u—n
©ooh~Hoow

debug [BasicSpec]

author count_star(Q)
string long

T
J.D. Salinger R 1
F. Scott Fitzgerald Query esult

Harper Lee
John Steinbeck

spec:basic:agg_rel.wv

https://wvlet.org/airframe/docs/airspec/

Wvlet Development Roadmap

e Roadmap is maintained at GitHub Project page.
o Planning milestones for about every 3 months
o Versions will be YYYY.(milestone month).(patch) (See #170 for the versioning scheme)
e Release 2024.9
o Flow-style query language design and compiler
m Including scanner, parser, typer, tree rewrite framework, execution planner, SQL generator, etc.
DBMS Connector (DuckDB, Trino)
wv: Interactive command-line editor (REPL)
Installer (Homebrew)
o Web Ul, Playground (Monaco Editor with DuckDB-Wasm)
e Release 2025.1
o Model management
m Generate dependent model materialization plan, like dbt
m GitHub integration
o Compiler plugins for advance optimization
m Incremental processing, query fusion, etc.
o Language SDKs
] Python, Rust, C/C++, Java, etc.
o SQL to Wvlet converter

OFMOANO)

¥ TREASURE DATA

¢

https://github.com/orgs/wvlet/projects/2/views/2
https://github.com/wvlet/wvlet/issues/170

Summary

e Designed Wvlet, a new open-source
flow-style query language

e Addresses challenges in 50-year-old
design of SQL
o Leverage good sides of SQL
m natural-language like syntax
o Intuitive syntax for data flow
o Reusability
o Extensibility

o \Website:
GitHub:

TREASURE DATA

W wvlet

Documentation ~ Query Syntax Playground ¥ Blog Release Notes (3

Wvlet is a cross-SQL flow-style query language for functional
data modeling and interactive data analysis.
w Vle t Try W Documentation QOstar 37

Analyze As You Write

The flow-style query enables you to analyze data as you write queries for interactive
data exploration.

Cross-SQL Engine Support

Wulet consumes the differences between SQL engines, such as DuckDB, Trino, Hive,
etc. You can switch the SQL engines without changing the query, depending on the
data size and the expected query performance.

GitHub Integration

Save your queries in GitHub repositories and call them from other queries to ensure
reproducibility with version control.

Roadmap @ GitHub @ 0: Q

. 1_linestatus

Functional Data Modeling

Wlet enables to build functional (i.e., reusable and composable) data models, which
can be shared and extended to build reliable data pipelines as in dbt.

Exensible

Wulet is extensible with table-value functions or compiler-plugins to add your
custom query rewrite rules

Free and Open Source

We believe in the power of open-source software and want to help you to exploit
more values from your data and queries written with Wvlet. Wvlet is free to use and
open-sourced under the Apache License, Version 2.0 (APL2) license.

20

https://wvlet.org/wvlet/
https://github.com/wvlet/wvlet

W TREASURE DATA

21

¥ TREASURE DATA

Appendix

22

Wvlet Internals: Standard Library

e Whvlet defines standard data types and functions, which define how to generate SQL
o example: x.to_int.round(1) => cast(x as bigint).round(1) => round(cast(x as bigint),1)

package wvlet.standard

type int:
def to_int: int = sql"cast(${this} as bigint)"
def to_long: long = sql"cast(${this} as bigint)"
def to_float: float = sql"cast(${this} as double)"
def to_double: double = sql"cast(${this} as double)"
def to_boolean: boolean = sql"cast(${this} as boolean)"
def to_string: string = sql"cast(${this} as varchar)"

def or_else(other:int): int = sql"coalesce(${this}, ${other})"

def round(decimal:int=0): double = sql"round(${this}, ${decimal})"

def in(v:anyx): boolean = sql"${this} in (${v})"
def not_in(v:anyx): boolean = sql"${this} not in (${v})"

def between(l:int, r:int): boolean = sql"${this} between ${1} and
end

TREASURE DATA

Wvlet Internals: DBMS Specific Functions

e Function can have different implementations depending on the target databases (Trino/Hive/DuckDB, etc.)

o x.count_approx_distinct
m Trino: approx_distinct(x)
m DuckDB: approx_count_distinct(x)
e Works for consuming the differences between SQL dialects and UDFs

-- An array created by 'group by' clause
type arrayl[A]:
def length: int = sql"length(${this})"
def size: int = sql"length(${this})"
def get(index: int): A = sql"${this}[${index}]"
def count: int = sql"count(x)"

def count_distinct: int = sql"count(distinct ${this})"
def count_if(cond:boolean): int = sql"count_if(${cond})"

-- Fast and memory-efficient approximate counting of distinct elements
def count_approx_distinct |in trino: |int = sql"approx_distinct(${this})"
def count_approx_distinct [in duckdb:| int = sql"approx_count_distinct(${this})"

TREASURE DATA

24

Extending Wvlet

e Compiler plugins (to be designed #185)
o Add a custom rule set to optimize logical plans and execution plans.
m Optimization rules: Query fusion optimization, subquery materialization, incremental processing, etc.
o Security rules (e.g., forbidding local file access operators at the cloud environment)
e Table functions receive table-value data and output table value data
o Not limited to SQL, we will be able to invoke ML algorithms, calling Embulk, or issuing SQL queries to
different query engines by generating such execution plans.

Generate SQL Q DuckDB
Query.wv Logical Plans EXQ&'OH Plans /
|:> Query Compiler |:j> ::‘> Query Runner

Composable Data Models Static Type Analysis Query Rewrite Framework Table Functions
Subquery Materialization
Non SQL-Extension

\ / \ oython’ @ embulk

W TREASURE DATA 25

=

°

it GItHUb I t Query Fusion
wvie

Differentially Private SQL

https://github.com/wvlet/wvlet/issues/185
https://www.amazon.science/publications/computation-reuse-via-fusion-in-amazon-athena
https://github.com/xerial/streamdb-readings?tab=readme-ov-file#incremental-processing-with-materialized-views
https://arxiv.org/abs/2009.13631

Writing A Compiler From Scratch? Leverage LLMs

e Developing a compiler is a challenge with _
known difficulties and known solutions e Joln =
o = solved problem

Indicate what you want to code

e By leveraging LLM-based tools like GitHub
Copilot, we can accelerate the development

e LLMs excel at utilizing well-known solutions
from open-source code.

F
GitHub Copilot suggests code in a second

TREASURE DATA 26

Wvlet is easy to learn, even for Large Language Models (LLMs)

e An LLM Agent, created from Wvlet

documentation, can successfully o i = Y

sun(1_extendedprice = (1 - 1_discount)) AS sum_disc_price,

Convert TPC_H SQL quel’leS IntO P\ You ::::t::::::::ri;ea:g;t;'L_ms:oum) # (1 + _tax)) AS sum_charge,

avg(1_extendedprice) AS avg_price,
Write some TPC-H queries in Wvlet avg(1_discount) AS avg_disc,
Whvlet syntax q Pk
FROM

o Wuvlet: Query Syntax

WHERE

Agom _shipdate <= CAST('1998-09-02' AS date)

documentation (link) o by
Certainly! I'll provide you with some examples of TPC-H queries trang lreturnflag,

1_linestatus . e
oriented ad-hoc queries. Here are a few examples: OROER BY Original TPC-H
Ureturnflag, Q1 SQL

1_linestatus;
Query Syntax 1. Query 1 - Pricing Summary Report: = ~

o from lineitem
« Relstions! Operstors where 1_shipdate <= date('1998-12-01') - interval '9@' day

« Expressions

Tkt Foncions group by

« Data Models

References

) 1_returnflag,
Introduction
e 1_linestatus
it easy tolearn the syntax of et a there area ot of simiarites between wviet and SQL. Even fyou are new to SQL, no worres! You
can star learning wvet from scratch. I you know about DataFrame n Pytha, it willhelp you understand the et query language as agg
chaining relatinal operators in the flow-stye s quite smilar o using DataFrame APL
Wulet queries start with fron keyword, and you can chain multiple relational operators to process the input data and generate the sum_q t y=_. 1 qua nt ity .sum,

output data. The following is a typical flow of chaining operators in a wulet query:

sum_base_price = _.1_extendedprice.sum,

sum_disc_price = (_.1_extendedprice * (1 - _.1_discount)).sum,

sum_charge = (_.l_extendedprice * (1 — _.1_discount) * (1 + _.1_tax)).sum,
avg_qty = _.l_quantity.ave,

avg_price = _.1_extendedprice.ave,

Unlike SQL, whose queries always must follow the SELECT ... FRON ... WHERE ... GROUP BY ... ORDER BY ... LINIT ... structure,

e uery writing avg_disc = _.1_discount.ave,
count_order = _.count

will be translated into the equivalent SQL syntax.

order by
1_returnflag,

W TREASURE DATA Ulinestatus TPC-H Q1 in Wvlet 27

https://wvlet.org/wvlet/docs/syntax/

wv: Interactive Query Editor

describe (line:4): where aws_account_owner != 'security'

e Available with brew install wvlet/wvlet/wvlet e e
o Supports Trino, DuckDB via profile settings T o
-ost_cacegory STtring
e Shortcut keys for checking intermediate schema aws_account_code string

1Ng
and results user_service ing
serv 2, = < LNg

o ctrl-j, ctrl-d (describe the schema at the line) S S string

ctrl-j, ctrl-t (test run the subquery upto the line) custome :
ctrl-j, ctrl-r (run the whole query) plan_

esou

IC

[#)
[¢)
19
[¢)

string
from cost_components f double]
mi 5},‘;,‘;:‘;},2},’;‘”?!,“?: ?security- tive_cos double Intermediate Table Schema

add service_name = coalesce(user_service, cost_category) public_cost double
-- type ctrl+j ctrl+t (test run) to debug the intermediate query result cost double
add td_time_string(time, 'M!') as month string
pivot on month in ('2024-06', '2024-07', '2024-08') G [T
group by service_name ong
agg cost.sum.round(1)
order by "2024-08" desc
limit 10;

debug (line:6): add td_time_stringCtime, 'M!') as month Subquery Result

L
STIri
ri

I
I
I
I
I
I

from cost_components

cost_category aws_account_code | aws_account_owner user_service where time.within('-3M/now') : .
string string string string -- type ctrl+j ctrl+d (describe) here to show the intermediate schema]
! AR

Production td engineering waf -event-col lector3 mgrgemsztmoggz{eécecagg:r;g'wce cost_category)
Production kitchen engineering-lead core-eks-app-ronald-testing | § = L e I = ’ gory
Non Production td engineering waf-event-collector3 : add td_time_string(time, 'M!") as month
Production kitchen engineering-lead | core-eks-app-scp-foo d pivot on month in ('2024-06', '2024-07', '2024-08')
Non Production td engineering waf-event-collector3] group by service_name
Production kitchen engineering-lead core-eks-app-scp-foo] agg cost. sum. round(1)
Non Production td engineering waf-event-collector3] 99 P .
Production kitchen engineering-lead | core-eks-app-scp-foo ; order by "2024-08" desc
Production td engineering waf-event-collector3 d limit 10;

Design Philosophy of Wvlet

e Link:

e Matching syntax order with data flow

o Typing from left-to-right, top-to-bottom order
e Use only lowercase keywords

o Forbid mixing SELECT and select
e One operation at a time

o SQL’'s SELECT operator is too powerful

o Breaking down SELECT statement into simple

operators (add, transform, exclude, shift, etc)

e Human and machine friendly-syntax

o Query lines form subqueries

m Trailing comma support is essential to correctly
extract subqueries in an executable form
o Enable in-query data/schema inspection

TREASURE DATA

SELECT
sum(cl),

c2 as c2_new,

c4 + c5 as clel,

c8,

clee,

c6,

A
FROM tbl

from tbl

-- Add a simple aggregation
add cl.sum

-- Rename c2 with an alias
transform c2 as cZ_new

-- Remove c3 from the result
exclude c3

-- Add a new computed column
add c4 + ¢S5 as cl0l1

-- Shift c6 and c7 to the end
shift to right c6, c7

29

https://wvlet.org/wvlet/docs/internal/design

Related Work: SaneQL (Thomas Neumann, et al. 2024)

e The syntactic order of SQL doesn’t match with the semantic order of data processing
e Redesigned SQL by using a function chain syntax
o A Critigue of Modern SQL And A Proposal Towards A Simple and Expressive Query Language (CIDR 24)

let min_cost_for_part(p_partkey) :=
partsupp.filter(ps_partkey=p_partkey)
.join(supplier, s_suppkey=ps_suppkey)

SELECT r.d,- o S : . :

2 sum(r.e) #s.s,—_ _____—join © .join(nation, s_nationkey=n_nationkey)

{g rank() over lnxderﬁﬁﬁ},¢;k<f~mwr o .join(region.filter(r_name="EUROPE'),

O |FROM r, s— : //:/g,\// N ;"33:993"0" § n_regionkey=r_regionkey)
WHERE = - ” Ner O :

E s : § - is// \window |2 .aggregate(min(ps_supplycost)),

S |GROUP BY r.d— s esort ‘é’ part

O |HAVING sum(r.e) > 3 — “project) .filter(p_size = 15 && p_type.like('%BRASS'))
.ORDER by r.d— e

.join(partsupp, p_partkey = ps_partkey)
.join(supplier, s_suppkey = ps_suppkey)
.join(nation, s_nationkey = n_nationkey)
.join(region.filter(r_name='EUROPE'),
n_regionkey=r_regionkey)

.filter(ps_supplycost=min_cost_for_part(p_partkey)) ...

WV TREASURE DATA

https://www.cidrdb.org/cidr2024/papers/p48-neumann.pdf

Related Work: PRQL (Prequel)

e Pipelined Relational Query Language (Since 2022) https://prgl-lang.org/
e Written in Rust, compiling PRQL to SQL
o Syntax is a bit far from SQL, more like DataFrame API or programming language syntax

~ PRQL
from tracks
filter artist == "Bob Marley" # Each line transforms the previous result
aggregate { # ‘aggregate’ reduces each column to a value
plays sum plays,
longest max length,
shortest = min length, # Trailing commas are allowed

}

sSQL

SELECT
COALESCE(SUM(plays), 0) AS plays,
MAX (length) AS longest,
MIN(length) AS shortest

FROM
tracks

WHERE
artist = 'Bob Marley'

¥ TREASURE DATA

31

https://prql-lang.org/

