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2024: 50th Anniversary of SQL
● SQL was born in 1974

○ SQL’s early design choices paved the way for standardization and commercial adoption
● Since then, applications of SQL have expanded significantly

○ OLAP: From RDBMS to Trino, Hive, Spark, etc.
○ Embedded DB: SQLite (OLTP) -> DuckDB (OLAP with Parquet/Iceberg support)
○ SQL’s user base has grown beyond DBA to include non-engineers
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https://cacm.acm.org/research/50-years-of-queries/


Trino at Treasure Data (2024)
● Treasure Data has been operating Trino (formerly Presto) as a service since 2014 (10th anniversary!) 

○ 3+ million Trino SQL queries processed / day 
○ 400+ trillion rows processed / day
○ 3+ billion S3 GET requests / day

■ Reduced from 10 billion requests / day  (2023) by partition optimization

● In 2024, we completed the customer traffic migration from Presto (350) to Trino
○ See our migration/test methods in DBTest 2022 paper

● A lot of challenges in managing SQL and helping users (or LLM) write efficient SQL queries
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What’s Wrong with SQL? 
● The syntactic order of SQL doesn’t match the actual data flow

○ A Critique of Modern SQL And A Proposal Towards A Simple and Expressive Query Language (CIDR 24)
○ Even SQL experts find it challenging to debug nested queries

● Lacks essential software engineering features for managing many queries
○ No built-in support for reusing queries
○ No entry points for multi-query optimization

■ e.g., incremental processing and pipeline execution like dbt
○ No built-in debugging or testing capabilities
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https://www.cidrdb.org/cidr2024/papers/p48-neumann.pdf


Wvlet: Modernizing 50-Year-Old SQL

● SQL has proven to be effective and useful
○ Its natural-language based syntax has gained widespread 

adoption

● Redesigned SQL to be more intuitive and functional

● Wvlet: a new flow-style query language for weaving data
○ Pronounced as weave-let
○ Queries start with “from” for intuitive data flow

● Functional
○ Wvlet queries are reusable and composable like functions

● Cross SQL engine support
○ Generates SQL for Trino, Hive, DuckDB, etc.

● Try Wvlet on your web browser https://wvlet.org/
○ No installation is required
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Command-line editor of Wvlet (wv)

https://wvlet.org/


Wvlet Playground wvlet.org
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Wvlet Query Compiled SQL

Query Result 

http://wvlet.org/


Wvlet: Architecture
● From query (.wv) files, Wvlet compiler produces logical plans, execution plans, and SQL statements
● Logical Plans

○ Tree-representations of relational operators (e.g., scan, filter, projection) 
■ Sort(Join(Filter(TableScan(...)), TableScan(...))) 

● Execution Plans
○ A sequence of steps to execute SQL and other programs

■ ExecutePlan(ExecuteSQL(query), ExecuteTest(expr), ExecuteCommand(expr), …)
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Wvlet: Analyze As You Write
● Flow-style queries

○ Each line is a single operation 

● Peek the data and schema at any point
○ A subquery becomes a range of lines 

in the query text

● Easy to extend
○ Queries can be reused for further 

analysis
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Related Work: GoogleSQL Pipe Syntax (2024)
● SQL Has Problems. We Can Fix Them: Pipe Syntax 

In SQL (VLDB 2024)
● Extended SQL syntax with pipe operator (|>) 

○ Available in ZetaSQL, an open-source SQL 
parser, used in Google products, e.g., BigQuery, 
F1, etc.

● Other flow-style languages:
○ PRQL, Microsoft Kusto, DryadLINQ, etc.
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SQL

SQL + Pipe Syntax

https://research.google/pubs/sql-has-problems-we-can-fix-them-pipe-syntax-in-sql/
https://research.google/pubs/sql-has-problems-we-can-fix-them-pipe-syntax-in-sql/
https://github.com/google/zetasql/blob/master/docs/pipe-syntax.md


Wvlet: Relational Operators (online reference)

● In Wvlet, all keywords must be lower-case letters
○ For consistency and reducing implementation efforts

● Same operators with SQL:
○ from, select, join, where, order by, limit, etc.

● Aggregation in Wvlet
○ group by k1, k2, … agg … 
○ agg (aggregation expr), ..

■ Report group-by keys and aggregation 
expressions: k1, k2, …, expr1, expr2, …

○ group by k1, k2, … where … 
■ equivalent to group by … having …

10Basic Flow of Wvlet Queries

Aggregation Query

https://wvlet.org/wvlet/docs/syntax/relational-operators


Wvlet: Column At A Time Manipulation
● For minimizing your typing effort

● add (expr) as …
○ Add a new column 

● rename (column) as (new name)
● exclude (column), …
● shift (to left/right)? column, …. 

○ Reorder columns for readability

● Changing a single column or its order in 
SQL is not easy as we need to 
enumerate all columns
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Wvlet: Additional Relational Operators
● Refined from SQL

○ concat = UNION ALL in SQL
■ Most of SQL users wrongly use UNION (duplicate 

elimination) where UNION ALL (concatenate two 
relations) is appropriate.

○ dedup  = select distinct * (= duplicate elimination)

● Utility operators
○ transform: Update only subset of columns 
○ sample n
○ pivot

■ Transform  column values into individual columns
■ trino#1206 (Remains open since 2019) 
■ Wvlet can run multiple SQL queries, so it’s relatively 

easy to implement static/dynamic pivot 
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https://github.com/trinodb/trino/issues/1206


Wvlet: Update Statements
● save as  

○ A shorthand notation for: 
■ DROP TABLE IF EXISTS tbl; CREATE TABLE tbl 

AS SELECT …
● Most frequently used pattern in Treasure 

Data
■ CREATE OR REPLACE TABLE AS SELECT  

● Available in DuckDB, Trino 431 (Since Oct 
2023)

○ For DuckDB backend, you can save query results as 
Parquet/JSON files

● append to
○ Almost same with INSERT INTO, but it clarifies 

append-only semantics (no overwrites)
■ Useful when using versioned tables like 

Iceberg/Delta Lake 

● delete
○ Delete selected rows from the table
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https://github.com/trinodb/trino/pull/13681


Function Chaining via Dot Operator
● In SQL, every function is global

○ SUM(x), AVG(x), COUNT(*), ROUND(x, 1), …
○ A lot of cursor movements are necessary to 

apply functions in SQL

● Wvlet supports chaining functions with dot 
operator as in modern programming languages:

○ e.g., x.sum, x.avg.round(2), _.count 
○ _ (underscore) refers to the output from the 

previous operator
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Wvlet Query = A Function for Building A Data Model
● In Wvlet, a query defined as a data model that can be reused at ease (Query Templates)
● Composable

○ You can add more relational operators (e.g., where, join) to data models
● Reusable

○ Models accept user parameters (= function arguments)
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Testing Queries
● Wvlet Test Syntax

○ Useful for verifying resulting 
schema and results

● Wvlet is tested with Wvlet
○ Wvlet spec queries
○ Covers all 22 TPC-H queries
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https://wvlet.org/wvlet/docs/syntax/test-syntax/
https://github.com/wvlet/wvlet/tree/main/spec


Debugging Queries
● Debug operator can be used for checking intermediate query results
● ExecutionPlanner generates multiple execution paths for debug and regular query evaluation

○ Debug path: Query before debug statement -> debug query
○ Regular path: Query without debug statement 
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Wvlet Internals: Compiler
● Compiler phases: Parser -> SymbolLabeler -> TypeResolver -> Rewriter -> ExecutionPlanner -> GenSQL

○ CompilationUnit holds the source text, untyped logical plan, typed logical plan, execution plan, etc.
● With AirSpec testing library, you can adjust the log levels of individual components

○ -L (class name pattern)=(log level) option
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https://wvlet.org/airframe/docs/airspec/


Wvlet Development Roadmap
● Roadmap is maintained at GitHub Project page. 

○ Planning milestones for about every 3 months
○ Versions will be YYYY.(milestone month).(patch)  (See #170 for the versioning scheme)

● Release 2024.9
○ ✅ Flow-style query language design and compiler

■ Including scanner, parser, typer, tree rewrite framework, execution planner, SQL generator, etc.
○ ✅ DBMS Connector (DuckDB, Trino)
○ ✅ wv: Interactive command-line editor (REPL)
○ ✅ Installer (Homebrew)
○ ✅ Web UI, Playground (Monaco Editor with DuckDB-Wasm)

● Release 2025.1
○ Model management

■ Generate dependent model materialization plan, like dbt
■ GitHub integration

○ Compiler plugins for advance optimization
■ Incremental processing, query fusion, etc.

○ Language SDKs
■ Python, Rust, C/C++, Java, etc.

○ SQL to Wvlet converter
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https://github.com/orgs/wvlet/projects/2/views/2
https://github.com/wvlet/wvlet/issues/170


Summary
● Designed Wvlet, a new open-source 

flow-style query language 

● Addresses challenges in 50-year-old 
design of SQL

○ Leverage good sides of SQL
■ natural-language like syntax

○ Intuitive syntax for data flow
○ Reusability 
○ Extensibility

● Website: https://wvlet.org/ 
● GitHub: https://github.com/wvlet/wvlet 
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https://wvlet.org/wvlet/
https://github.com/wvlet/wvlet
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Wvlet Internals: Standard Library
● Wvlet defines standard data types and functions, which define how to generate SQL 

○ example: x.to_int.round(1)  => cast(x as bigint).round(1) => round(cast(x as bigint),1)
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Wvlet Internals: DBMS Specific Functions
● Function can have different implementations depending on the target databases (Trino/Hive/DuckDB, etc.)

○ x.count_approx_distinct 
■ Trino:  approx_distinct(x)
■ DuckDB: approx_count_distinct(x)

● Works for consuming the differences between SQL dialects and UDFs
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Extending Wvlet
● Compiler plugins (to be designed #185)

○ Add a custom rule set to optimize logical plans and execution plans.
■ Optimization rules: Query fusion optimization, subquery materialization, incremental processing, etc.

○ Security rules (e.g., forbidding local file access operators at the cloud environment)
● Table functions receive table-value data and output table value data 

○ Not limited to SQL, we will be able to invoke ML algorithms, calling Embulk, or issuing SQL queries to 
different query engines by generating such execution plans.
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https://github.com/wvlet/wvlet/issues/185
https://www.amazon.science/publications/computation-reuse-via-fusion-in-amazon-athena
https://github.com/xerial/streamdb-readings?tab=readme-ov-file#incremental-processing-with-materialized-views
https://arxiv.org/abs/2009.13631


Writing A Compiler From Scratch? Leverage LLMs
● Developing a compiler is a challenge with 

known difficulties and known solutions
○ = solved problem

● By leveraging LLM-based tools like GitHub 
Copilot, we can accelerate the development

● LLMs excel at utilizing well-known solutions 
from open-source code.
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GitHub Copilot suggests code in a second

Indicate what you want to code



Wvlet is easy to learn, even for Large Language Models (LLMs)
● An LLM Agent, created from Wvlet 

documentation, can successfully 
convert TPC-H SQL queries into 
Wvlet syntax

○ Wvlet: Query Syntax 
documentation (link)

27TPC-H Q1 in Wvlet

Original TPC-H 
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https://wvlet.org/wvlet/docs/syntax/


wv: Interactive Query Editor
● Available with brew install wvlet/wvlet/wvlet

○ Supports Trino, DuckDB via profile settings
● Shortcut keys for checking intermediate schema 

and results
○ ctrl-j, ctrl-d (describe the schema at the line)
○ ctrl-j, ctrl-t (test run the subquery upto the line)
○ ctrl-j, ctrl-r (run the whole query)
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Design Philosophy of Wvlet
● Link: https://wvlet.org/wvlet/docs/internal/design

● Matching syntax order with data flow
○ Typing from left-to-right, top-to-bottom order

● Use only lowercase keywords
○ Forbid mixing SELECT and select

● One operation at a time
○ SQL’s SELECT operator is too powerful 
○ Breaking down SELECT statement into simple 

operators (add, transform, exclude, shift, etc)
● Human and machine friendly-syntax

○ Query lines form subqueries 
■ Trailing comma support is essential to correctly 

extract subqueries in an executable form
○ Enable in-query data/schema inspection
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https://wvlet.org/wvlet/docs/internal/design


Related Work: SaneQL (Thomas Neumann, et al. 2024)
● The syntactic order of SQL doesn’t match with the semantic order of data processing
● Redesigned SQL by using a function chain syntax 

○ A Critique of Modern SQL And A Proposal Towards A Simple and Expressive Query Language (CIDR 24)
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https://www.cidrdb.org/cidr2024/papers/p48-neumann.pdf


Related Work: PRQL (Prequel)
● Pipelined Relational Query Language (Since 2022) https://prql-lang.org/ 
● Written in Rust, compiling PRQL to SQL

○ Syntax is a bit far from SQL, more like DataFrame API or programming language syntax
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https://prql-lang.org/

