
Trino & OPA
@ Stackable

Sönke Liebau
& Sebastian Bernauer

Agenda

1. What is Stackable?
2. Open Policy Agent (OPA) authorization plugin

○ History
○ Recent development
○ Compatibility layer to Trino’s File-based access control
○ Quick demo on row filtering and column masking

3. Auto-scale Trino clusters using trino-lb
○ Differences between trino-gateway and trino-lb

4. Lessons learned running Trino on Kubernetes
○ What our trino-operator is doing
○ Potential next steps

About us

Co-Founder of Stackable,
working with Big Data Open
Source Software since
2012, speaker, contributor,
husband & father…

Sönke Liebau
CPO Stackable

Working with Big Data
Open Source Software since
2019
Big Open Source and
Trino fan :)

Sebastian Bernauer
Software developer

OPA plugin - History

https://www.youtube.com/
watch?v=fbqqapQbAv0

OPA plugin - History
History

1. 2021/10: Stackable creates the stackabletech/trino-opa-authorize repo
2. 2023/02: After Bloomberg reached out license was changed to ASL2
3. 2023/05: Bloomberg created Trino PR upstream with much improved version
4. 2024/01: OPA plugin was merged into Trino and released with version 438 🚀

Recent development

5. 2024/07: Bloomberg improve the performance of column masks by batching
requests send to OPA, released in 453 🚀
https://github.com/trinodb/trino/pull/21997

Compatibility layer to Trino’s
File-based access control

● Trino already offers a great and flexible access control

● We want users to be able to migrate to OPA as easy as possible

→ Compatibility layer written in rego, which takes the same JSON definition
as input and emulates the Trino behaviour
→ Can server as a starting point

https://github.com/stackabletech/trino-operator/tree/main/tests/templates/kuttl/opa-authorization/trino_rules

access-control.name=file

security.config-file=etc/rules.json

https://github.com/stackabletech/trino-operator/tree/main/tests/templates/kuttl/opa-authorization/trino_rules

Compatibility layer

{

 "tables": [

 {

 "user": "admin",

 "privileges": ["SELECT", "INSERT", "DELETE", "UPDATE", "OWNERSHIP"]

 },

 {

 "schema": "hr",

 "table": "employee",

 "privileges": ["SELECT"],

 "filter": "user = current_user"

 }

]

}

https://trino.io/docs/current/security/file-system-access-control.html

Compatibility layer

{

 "schemas": [

 {

 "user": "admin",

 "schema": ".*",

 "owner": true

 },

 {

 "group": "finance|human_resources",

 "schema": "employees",

 "owner": true

 }

]

}

https://trino.io/docs/current/security/file-system-access-control.html

Userinfo Fetcher

Userinfo Fetcher

The Big Picture

Bundle Builder

ACLs

UserInfo
Fetcher

Quick demo on row & column level security

https://www.youtube.com/
watch?v=ATlq_l3WNiA

Customer
Analytics

Marketing Customer Service Compliance

Kerberos
secured

OpenID
connect

Authorization Impersonation No impersonation

Justin Martin Sophia Clarke

Compliance
Analytics

Mark Ketting

Column Level Security

Column-level security:

Read from customer, but the following rules
should apply:

1. Prohibit reading first and last name,
birth_month and birth_day

2. Instead of seeing the customer_id
they only see the sha256 hash of it

3. Email-addresses are masked to
abcXXXX@domain.com

Customer
Analytics

Marketing Customer Service Compliance

Mark Ketting Justin Martin Sophia Clarke

Compliance
Analytics

customer_analytics schema

customers table
● customer_id
● first_name
● last name
● birth_year
● birth_month
● birth_day
● login
● email_address…

compliance_analytics schema

customer_enriched view
● customer_id
● birth_year
● email_address…

How does it look in code?

Row Level Security

Customer
Analytics

Marketing Customer Service Compliance

Mark Ketting Justin Martin Sophia Clarke

Compliance
Analytics

employees schema

● username
● email
● supervisor
● salary…

Row-level security:

Read from employees, but the
following rules should apply:

1. Everyone can only see
themselves

2. Supervisor additionally see
their reports

How does it look in code?

Demo time

Quick demo on row & column level security

● trino-lb development started around 2023/10, just before trino-gateway was
first released

● The primary goals are
○ Queuing of queries in case all available Trino clusters are already full
○ Auto-scaling of entire Trino clusters (load and time based)
○ Performance (trino-lb is horizontally scalable)
○ High availability (trino-lb is stateless)
○ Very flexible routing strategies (e.g. Python script)
○ Modularity to supported different persistence, routing and

scaling implementations

https://github.com/stackabletech/trino-lb

Auto-scale Trino clusters using trino-lb

https://github.com/stackabletech/trino-lb

Auto-scale Trino clusters using trino-lb

● OpenTelemetry tracing
○ Trace propagation to Trino

Auto-scale Trino clusters using trino-lb

Lessons learned running Trino on Kubernetes

● First off: We don’t run any production Trino on Kubernetes

● But our customers do :)

● We have written an operator to manage Trino on Kubernetes:
https://github.com/stackabletech/trino-operator

● Documentation: https://docs.stackable.tech/home/stable/trino/

https://github.com/stackabletech/trino-operator
https://docs.stackable.tech/home/stable/trino/

Try to avoid coordinators restarts

● A coordinator restart kills all running queries
● Mitigation:

○ We have a flag: Don’t touch this cluster at all costs!
● Potential future work:

○ Trino HA [#391]? :)
○ Maintenance windows
○ Graceful shutdown of coordinator

i. Remove coordinator from trino-lb/trino-gateway
ii. Wait till all queries finished
iii. Restart
iv. Add coordinator to trino-lb/trino-gateway again
v. Requires Kubernetes nodes to wait long enough while draining!

Graceful shutdown of workers

● A worker restart kills all running queries (without fault tolerant execution)
● Mitigation:

○ Graceful shutdown of workers
i. Requires Kubernetes nodes to wait long enough while draining!
ii. We also set query.max-execution-time

○ Fault tolerant execution :)

Pod placement

● Avoid too many workers being down at the same time
● Mitigation:

○ By default we spread all workers across as many nodes as possible
i. Can be customized by customer based on their topology
ii. Avoid impact of node/rack/room/datacenter failures
iii. Assumption: Big worker nodes to reduce internal Trino traffic

○ PodDisruptionBudets: Only X nodes can be down simultaneously

