Trino & OPA
@ Stackable

Sonke Liebau
& Sebastian Bernauer

= Stackable

Agenda

1. What is Stackable?
2. Open Policy Agent (OPA) authorization plugin

o History

o Recent development

o Compatibility layer to Trino’s File-based access control

o Quick demo on row filtering and column masking
3. Auto-scale Trino clusters using trino-Ib

o Differences between trino-gateway and trino-Ib
4. Lessons learned running Trino on Kubernetes

o What our trino-operator is doing

o Potential next steps

= Stackable

About us

Sonke Liebau
CPO Stackable

Co-Founder of Stackable,
working with Big Data Open
Source Software since
2012, speaker, contributor,
husband & father...

. Sebastian Bernauer
Software developer

Working with Big Data
Open Source Software since
2019

Big Open Source and

Trino fan :)

ZF Stackable

Stackable in a Nutshell

Founded Stackable Data Platform

2020 9 Open Source
¥ Infrastructure as Code

9 Cloud-native (Kubernetes)

o b.telligent
IONOS > On-Premises, Cloud, Hybrid

Our Team: 20 People Our Services Network - Collaborations

) Product Support o *!.IBUND[SVEHBhND

International ¥ Big Data Consulting ANCH

in Germany & Europe .
v B) Trainings bltkom ?g

&F Stackable

Popular Data Apps. Kubernetes-native. Easy to deploy and operate.

=

Stackable

Data Storage) druid

Data Integration

Infrastructure
Orchestration

Security

»

Open Policy Agent
Monitoring

O

Logging

Y

100% Open Source
modular and flexible

In every Cloud and in
your own Data Center

as Managed Service in
IONOS Cloud

&f Stackable

OPA plugin - History

Trino’s New OPA Authorizer:
An Open Source Love Story

butxssutbul

Biaquoo|g

Trino Summit 2023
December 14, 2023

Pablo Arteaga
Software Engineer, Reporting Apps Engineering, Bloomberg https://www.youtu be.com/

Sénke Liebau watch?v=fbggapQbAv0
Chief Product Officer, Stackable GmbH

TechAtBloomberg.com

- - I
0:00/33:03 - Introductién from Stackable > et [ey S 74 bl
» >l LDl ntroductién from Stackable i <3 '[acr\a e

Trino OPA Authorizer - Stackable and Bloomberg at Trino Summit 2023

OPA plugin - History

History

2021/10: Stackable creates the stackabletech/trino-opa-authorize repo
2023/02: After Bloomberg reached out license was changed to ASL2
2023/05: Bloomberg created Trino PR upstream with much improved version
2024/01: OPA plugin was merged into Trino and released with version 438 «

N~

Recent development

5. 2024/07: Bloomberg improve the performance of column masks by batching

requests send to OPA, released in 453 «
https://github.com/trinodb/trino/pull/21997

= Stackable

Compatibility layer to Trino’s
File-based access control

e Trino already offers a great and flexible access control

access—-control.name=file

security.config-file=etc/rules.json

e \We want users to be able to migrate to OPA as easy as possible

— Compatibility layer written in rego, which takes the same JSON definition
as input and emulates the Trino behaviour
— Can server as a starting point

https://github.com/stackabletech/trino-operator/tree/main/tests/templates/kuttl/opa-authorization/trino rules

ZF Stackable

https://github.com/stackabletech/trino-operator/tree/main/tests/templates/kuttl/opa-authorization/trino_rules

Compatibility layer

{
"tables": |

"user": "admin",

"privileges": ["SELECT", "INSERT", "DELETE", "UPDATE", "OWNERSHIP"]

"schema": "hr",
"table": "employe
"privileges": ["SELECT"],

"filter": "user = current user"

https://trino.io/docs/current/security/file-system-access-control.html & Stackable

Compatibility layer

{
"schemas": [
{
"user": "admin",
"schema": ".*",
"owner":

by
{

"group"y "finance|human re

"schema": "employees",

"owner":

https://trino.io/docs/current/security/file-system-access-control.html £ Stackable

Userinfo Fetcher

User info fetcher
| WARNING]

This feature is experimental, and subject to change.

The User info fetcher allows for additional information to be obtained from the configured backend (for
example, Keycloak). You can then write Rego rules for OpenPolicyAgent which make an HTTP request to
the User info fetcher and make use of the additional information returned for the username or user id.

= Stackable

Userinfo Fetcher

{
"id": "af@7f12c-a2db-40a7-93e0-874537bdf3f5",
"username”: "alice",
"groups": [
" /admin"
15
"customAttributes": {}
}

= Stackable

The Big Picture

ACLs

T

Bundle Builder €

& hErREED

Ay
<> trino

‘ Open Policy Agen] —

ko EYCLOAK]

T

Userinfo
Fetcher

[}g kafka | | LigHcs

= Stackable

Quick demo on row & column level security

Live-Demo: May 15th, 12 p.m. - 1 p.m.
https://www.youtube.com/

Stackable TechTalk watch?v=ATlq_I3WNIA

Mastering Data Platform Security

S Stackable

Stackable TechTalk - Mastering Data Platform Security

Marketing Customer Service Compliance

Compliance

A ics
O O O O
O O 2]

Mark Ketting Justin Martin Sophia Clarke

OO0 Superset

e
ICEBERG{J

A

5 YCLOAK ‘ Open Policy Agent - 1Ir J\Z
Spark

= Stackable

- Kerberos OpenlD —» Authorization — Impersonation - - » No impersonation
secured connect

Column Level Security

Marketing

Mark Ketting

Column-level security:

Read from customer, but the following rules
should apply:

3. Email-addresses are masked to
abcXXXX@domain.com

Customer Service

Customer
Analytics

Justin Martin

customer_analytics schema

customers table

Compliance

Compliance

Analvtics
l (@) l
(=]

Sophia Clarke

compliance_analytics schema

e birth_year

e login

I email_address...7—

customer_enriched view

e birth_year
e email_address...

How does it look in code?

"group": "/Compliance and Regulation/Analytics",
"catalog": "lakehouse",
"schema": "customer_analytics",
"table": "customer",
"privileges": ["SELECT"],
"columns" : [
{"name": "c_first _name", "allow": false},
{"name": "c_last name", "allow": false},
{"name": "c_birth_day", "allow": false},
{"name": "c_birth month", "allow": false},
{
"name": "c_customer_id
"mask": "'sha256:' || to_hex(sha256(to_utf8(c_customer_id)))",

"name": "c_email address",
"mask": "regexp_replace(c_email_address, '(["@l{1,3})(["@l+)@', '$1---@')",

= Stackable

Row Level Security

Marketing

Mark Ketting

Row-level security:

Read from employees, but the
following rules should apply:

e

2. Supervisor additionally see
their reports

Customer Service

Customer
Analytics

Justin Martin

Compliance

employees schema

e email
e supervisor
e salary...

Compliance
Analvti

Sophia Clarke

S Stackable

How does it look in code?

"catalog": "lakehouse",
"schema": "employees",

"table": "employees",
"privileges": ["SELECT"],
"filter": "username = current_user or supervisor = current _user",

= Stackable

Demo time

= Stackable

-

Quick demo on row & column level security

stackablectl demo install end-to-end-security

Installed demo 'end-to-end-security'

Use "stackablectl operator installed" to display the installed operators.
Use "stackablectl stacklet list" to display the installed stacklets.
stackablectl stacklet list

-

cluster-admin@shernauer-e2e-demo

cluster-admin@sbernauer-e2e-demo

PRODUCT NAME NAMESPACE { ENDPOINTS CONDITIONS
hdfs hdfs default datanode-default-0-listener-data 100.64.7.18:9866 Available, Reconciling, Running
datanode-default-0-listener-https https://100.64.7.18:9865
datanode-default-0-listener-ipc 100.64.7.18:9867
datanode-default-0-listener-metrics 100.64.7.18:8082
namenode-default-0-https https://100.64.17.180:9871
namenode-default-0-metrics 100.64.17.180:8183
namenode-default-0-rpc 100.64.17.180:8020
namenode-default-1-https https://100.64.4.74:9871
namenode-default-1-metrics 100.64.4.74:8183
namenode-default-1-rpc 100.64.4.74:8020
hive hive-iceberg ! default Available, Reconciling, Running
opa opa default Available, Reconciling, Running
superset superset default external-http http://85.215.242.225:31997 Available, Reconciling, Running
trino trino default coordinator-metrics 85.215.242.225:32419 Available, Reconciling, Running
coordinator-https https://85.215.242.225:31570
zookeeper | zookeeper default Available, Reconciling, Running

Use "stackablectl stacklet credentials [OPTIONS] <PRODUCT_NAME> <STACKLET_NAME>" to display credentials for deployed stacklets.

=S

cluster-admin@shernauer-e2e-demo

Auto-scale Trino clusters using trino-lb

e trino-Ib development started around 2023/10, just before trino-gateway was
first released

e The primary goals are

o Queuing of queries in case all available Trino clusters are already full
Auto-scaling of entire Trino clusters (load and time based)
Performance (trino-Ib is horizontally scalable)

High availability (trino-Ib is stateless)

Very flexible routing strategies (e.g. Python script)

Modularity to supported different persistence, routing and

scaling implementations

o O O O O

https://qithub.com/stackabletech/trino-lb

S Stackable

https://github.com/stackabletech/trino-lb

Auto-scale Trino clusters using t

Home > Dashboards > trino-Ib

espace trino-lb v

Running queries per clusters Queued queries per cluster group

i+ Add v

300 A
[\ s TS
J I\ 250 v
| ’
4 [T 1 1 200
|| [.
3 [r 150 I N
T TN \ LY
2 » D T i o S AT 100 ’)
|| \] | »
. [\ \f =y 50 N [N
\[“ \| “ ["
[\ 4 - .
0 ot b T N R 0 - > 3
15:20 15:25 15:30 15:35 15:40 15:45 15:20 15:25 15:30 15:35 15:40 15:45
== {rin0-m-1 e= trin0o-m-2 e= trino-s-1 == M == oidc == s
Active clusters HTTP requests
> = 150 req/s
2 cluster ey L T e R} =
| \ - oidc 125 reg/s
15 cluster | | | \ = 100 req/s
| [\ 75 regls
. e R R i
| | 50 req/s
[\
| | 25rreq/s
0.5 cluster | \
[\ O reg/s
| | 15:20 15:25
| \
0 ClUSTEr —e—e—o—e—s—o—o—o—o—ooos—o oot oo o oo oo oo oe == get_trino_executing_statement == get_trl
5:20 15:25 15:30 5:35 15:40

Queued duration

13.3 min
11.7 min

0 min
8.33 min —
6.67 min

5 min
3.33 min

1.67 min

0ms
15:20

15:30 15:35

ueued_statement

atement = get_trino_

/= 12.3 min
= 12.5 min

== p75 11.5 min

== p50 10.4 min

o
IS
o

Auto-scale Trino clusters using trino-lb

e OpenTelemetry tracing

o Trace propagation to Trino

Monitor

JAEGER UI Search Compare System Architecture

¢« v trino-Ib: GET /v1l/statement/queued/{queryld}/{slug}/{token} rci 3£ Trace Timeline v

s2 Depth4 Total Spans9
7.76ms

Trace Start December 20 2023, 08:42:48.° 72 Duraton 7.76ms Services De
Ops 1.94ms 3.88ms 5.82ms
T —— 1
5.82ms 7.76ms

Service & Operation v > ¥ » ops 1.94ms 3.88ms
D I trino-lb GET nUstatementiqueuedi{queryld)i{siug}token}
v | trino-b +a
v | trino-Ib B ———
| trino-lb i

e | trino-lb store_qu

| trino-lb cion

| trino-lb change_next_uri_to_trino_ib

ZF Stackable

Lessons learned running Trino on Kubernetes

e First off: We don’t run any production Trino on Kubernetes
e But our customers do :)

e \We have written an operator to manage Trino on Kubernetes:
https://github.com/stackabletech/trino-operator
e Documentation: https://docs.stackable.tech/home/stable/trino/

= Stackable

https://github.com/stackabletech/trino-operator
https://docs.stackable.tech/home/stable/trino/

Try to avoid coordinators restarts

e A coordinator restart kills all running queries
e Mitigation:
o We have a flag: Don’t touch this cluster at all costs!
e Potential future work:
o Trino HA [#391]? :)
o Maintenance windows
o Graceful shutdown of coordinator
i. Remove coordinator from trino-lb/trino-gateway
ii. Wait till all queries finished
iii. Restart
iv. Add coordinator to trino-lb/trino-gateway again
v. Requires Kubernetes nodes to wait long enough while draining!

= Stackable

Graceful shutdown of workers

e A worker restart kills all running queries (without fault tolerant execution)
e Mitigation:
o Graceful shutdown of workers
I. Requires Kubernetes nodes to wait long enough while draining!

ii. We also set query.max-execution-time
o Fault tolerant execution :)

= Stackable

Pod placement

e Avoid too many workers being down at the same time
e Mitigation:
o By default we spread all workers across as many nodes as possible
i. Can be customized by customer based on their topology
ii. Avoid impact of node/rack/room/datacenter failures

iii. Assumption: Big worker nodes to reduce internal Trino traffic
o PodDisruptionBudets: Only X nodes can be down simultaneously

= Stackable

