
Spooling client protocol
Trino Community Broadcast

Mateusz Gajewski
@wendigo

Agenda
● Direct protocol overview

● Spooling protocol design

● Direct vs spooling

● Server/client configuration

● Live demo 🎉
● Final thoughts

Direct protocol
● Stable for the last 10 years, since the early days of Presto,

● “Streaming” data retrieval semantics,

● Works out of the box:
○ Doesnʼt need any configuration,

○ Single deployment architecture - coordinator-oriented,

● JSON format only (we will get to it),

● Low latency, but also mediocre throughput:
○ Works best for highly-selective/DML queries,

○ Not so good for getting large datasets out of the cluster,

● Non-extensible and impossible to change.

Direct protocol flow

Spooling protocol objectives
● Much higher throughput,

○ Traded for some latency,

● Multiple deployment architectures possible,
○ Configurable to support diverse range of use-cases,

● Reuse existing framing and protocol semantics,

● Easy to implement on the client side,
○ Backward and forward compatibility for existing clients,

● Extensible encoding formats,
○ Negotiated between the client and the server,

○ Adding Arrow support is “easy” now.

How we did that?
● Spooling protocol extension (https://github.com/trinodb/trino/issues/22662),

● One extra header and one extra shape for the data field,
○ inline (byte[]) and spooled (URI) “segments”,

● Ships with existing JSON encoding,
○ Rolling out support in the existing clients,

● Protocol and encoding negotiation with graceful fallback,
○ Forward and backward compatibility for the existing clients and deployments,

● New SpoolingManager SPI,
○ Ships with native file system based manager with support for S3, ABFS, GCS,

● Allows adding new encoding schemes seamlessly.

https://github.com/trinodb/trino/issues/22662

On the wire format comparison

“data”: [
[row1:col1, row1:col2],
[row2:col1, row2:col2],
[row3:col1, row3:col2],
…

]

"data": {
 "encoding": "json+zstd",
 "segments": [{
 "type": "inline",
 "data": "c3VwZXI=",

"metadata": {...}
 }, {

"type": "spooled",
 "uri": "http://location",

"ackUri": "http://location"
"headers": {...},
"metadata": {...}

 }]
}

Direct protocol Spooling protocol (X-Trino-Query-Data-Encoding)

Spooling protocol flow

Implications
● Data encoding (CPU) moved from coordinator to the workers,

● Data handoff (I/O) moved from the nodes to the spooling storage,

● Segments spooled to the storage as fast as possible with little or no buffering*,

● Segments retrieval can happen outside of the query lifetime,

● Client gets more “data” (multiple segments) in a single nextURI call,

● Larger data chunks (1 MB in the direct vs up to the 128 MB per segment),
○ Configurable compression (Zstd, LZ4),

○ Improved throughput with small initial latency penalty.

* Small pages are coalesced to bigger segments to avoid creating too many small objects on the spooling storage

Configuration
● protocol.spooling.enabled=true

● spooling-manager.properties file:
○ spooling-manager.name=filesystem

○ fs.s3.enabled=true

○ fs.location=s3://spooling/

○ fs.segment.ttl=12h

○ …

● Support in the JDBC, ODBC*, CLI, Java and Python clients,

● SSE-C encryption enabled by default,

● Compressed JSON variants preferred

protocol.spooling.retrieval-mode
● STORAGE (1 hop)

○ Client goes directly to the spooling storage (presigned URI)

● COORDINATOR_STORAGE_REDIRECT (2 hops)
○ Client goes to the coordinator, gets redirected to the spooling storage (presigned URI)

● COORDINATOR_PROXY (1 hop)
○ Client retrieves the data through the coordinator (acts as an I/O proxy)

● WORKER_PROXY (2 hops)
○ Client goes to the coordinator, gets redirected and retrieves data through one of the workers

(acts as an I/O proxy)

Demo time
● Spooling-enabled Starburst Galaxy dev/prod cluster (~120 ms latency across the pond),

● Retrieval mode: STORAGE

● Trino CLI v469 run with:
○ time trino --server https://wendigo-wendigo-spooling.trino.galaxy-dev.io \

--user 'mateusz.gajewski@starburstdata.com/accountadmin' --password \

--execute 'SELECT * FROM tpch.sf10.lineitem LIMIT 1_000_000' \

--network-logging=BASIC \

--output-format=null [--encoding='json+lz4']

● Direct protocol: ~35s

● Spooled protocol: ~9s

Spooling protocol summary
● Non-experimental since 466 (Nov, 2024),

● Coexists with the direct protocol (for forward, backward compatibility),

● “Streaming” segment location retrieval,

● Requires storage configuration to use:
○ Extensive configuration options, session properties and deployment architectures,

● Only JSON format supported (for now),
○ Compressed variants

● Server side encryption with ephemeral per-segment encryption keys,

● Higher latency than direct but also much higher throughput.

Direct vs spooling comparison

Encoding: only JSON,

Optimized for: latency for small queries,

Data retrieval: streaming in inlined chunks,

Data chunk size: 1 MB,

Bottleneck: coordinator (CPU, I/O),

Requirements: none,

Client support: all Trino and Starburst clients.

Encoding: extensible, json, json+lz4, json+zstd,

Optimized for: large data set retrieval,

Data retrieval: streaming in spooled segments,

Data chunk size: 2-128MB pre compression,

Bottleneck: workers (CPU, I/O), storage (I/O),

Requirements: spooling storage configuration,

Client support: CLI, JDBC, ODBC*, Python.

Direct protocol Spooling protocol

Some extra things
● Lots of code refactors on the client and server side,

● Most of the optimizations ported to direct protocol:
○ New streaming JSON decoding/encoding,

○ Faster decimal/floats parsing (Jackson),

○ Direct memory to on-the-wire write for the Slice-backed types (char, varchar, varbinary, etc),

● Session properties to control inlining and segment sizes (469),

● TODO:
○ Experimental Arrow encoding in the works,

○ Support in the other client libraries (javascript, c#, golang, etc)

Thank you!
Mateusz Gajewski

01/31/2025

