A massively over-simplified Apache Iceberg read process

IdP Trino OPA
Analyst S3
Username: "jdoe"”
Login
token
4,
SELECT * FROM foo
Authorization: <some token>
validate token
L ELCEEEEEEEPEEEEEE »
Authorize
qm|
User: "jdoe"
Table: "foo"
o |
4.
Read files
S e P TR P e T T P E T PR TP EP TR ET LR ELPEPRORETE >
Table results
4. ..
IdP Trino OPA
S3

Analyst

A massively over-simplified Apache Iceberg read process

IdP Trino OPA
Analyst S3
Username: "jdoe"”
Login
token
4
SELECT * FROM foo
Authorization: <some token>
validate token Trino can check authz
i i before executing queries
qm|
User: "jdoe"
Table: "foo
H Trino can
OK . .
IPEA authenticate with S3
Read files
B P S ol S a i For e R TR P TN S U T T e e o Rty ’
Table results
‘. ..
IdP Trino OPA

S3
Analyst

Trying to read Iceberg data from S3 directly

Some issues:

e User identity
i e o o SSO integration
om0 i o Credential scoping
| e How to enforce authz
"""""""""""""""""""""""""""""""" T @ \What lceberg catalog?
IdP Trino OPA ® Heavily tied to the

53

Analyst Under|ylng Storage

Trying to read Iceberg data from S3 directly

o User identity:

IdP aAWSs-proxy OPA . .
Analyst. 53 o SSO0 integration
Username: "jdoe" . .
o Credential scoping
Login R .
o o User never deals with real
Emulated S3 credentials
e e S3 credentials
an! r
Signed with emulated credentials . HOW tO enforce authz
P cassliimisisionspinian B o OPA (or others!)
Vatdary 5 o ? But what policy?
e ? What Iceberg catalog?
PR oK . | o Let's assume user provides
Sign with remote credentials a SpeCIfIC metadata
e .
| filename
Read files "
data
4. .. 5 B S SR (e
IdP AWs-proxy OPA

Analyst

S3

Trying to read Iceberg data from S3 directly

o User identity:

J This is a simplification: oPA

Analyst the proxy also supports 53 o SSO integration

Username: "jdoe” . .

] STS o Credential scoping
Login R i
— o User never deals with real
Emulated S3 credentials
N). S3 credentials
s r
Signed with emulated credentials o HOW tO enforce aUch
P cassliimisisionspinian B o OPA (or others!)
Vatdary 5 o 7 But what policy?
e ? What Iceberg catalog?
PR oK . | o Let's assume user provides
Sign with remote credentials a SpeCIfIC metad ata
e .
| filename
Read files "
data
4. .. 5 B S SR (e

IdP AWs-proxy OPA

S3
Analyst

Trying to read Iceberg data from S3 directly

IdP aws-proxy metadata-svc OPA
Analyst S3
Username: "jdoe"
Login .
Emulated S3 credentials
B RGRE e L e R e TR L RE PR TRR (\
Read files o
e Translate
Signed with emulated credentials
bucket + key
Obtain emulated credentials
..., Obtain emulated credentials N to
Validaté bignature catalog + schema + table
Resolve
bucket + key to table
Table: "foo"
4.
Table: "foo"
» i
‘ ...
Sign with remote credentials
Read files i
data
< ... Bl o . e e, e, ottt 9 s e e e
IdP aws-proxy metadata-svc OPA
S3

Analyst

User identity:
o SSO integration
o Credential scoping
o User never deals with real
S3 credentials

How to enforce authz
o OPA (or others!)
0 Can share the same
policies as a Trino SELECT

? What Iceberg catalog?

o Let's assume user provides
a specific metadata
filename

What Iceberg catalog should we use?

e [Existing catalogs may not be easy to integrate:
o e.g., a JDBC-based catalog doesn’t have any easily-pluggable authentication

e Some tools just don’'t want to deal with another moving piece - they just want a
metadata file name

e Say hello to redirection!

o proxy/my_catalog/my_schema/my_table/metadata.json
o Redirected to the latest metadata file for my_catalog.my_schema.my_table
o Java-based API - make the logic as simple or as complex as you want

e This is simply a convenience
o Itis not intended to become a standalone Iceberg catalog
o Use it in conjunction with real Iceberg catalogs like Apache Polaris

Self-service file sharing - it’s not just Iceberg!

IdP aws-proxy metadata-svc OPA
Analyst S3
Username: "jdoe"
Login
Emulated S3 credentials
< ..
Upload to
bucket = "my-model" key = "foo.parquet"
Signed with emulated credentials
Obtain emulated credentials
- >
Validate signature
Authorize
OK U
.‘ ...
Resolve
bucket "my-bucket” + identity “jdoe"
‘ create bucket "my-bucket-jdoe”
Final bucket: "my-bucket-jdoe" ‘
T S rr s |
Sign with remote credentials
Upload to
bucket = "my-model-jdoe" key = "foo.parquet”
OK
4 ...
IdP aws-proxy metadata-svc OPA
S3

Analyst

Proxy access

T & secret keys

<t —m—————-

B

AWS S3 Proxy

Admin

I('_ tables

& secret keys

Scrape

Y i
S

S3/ECSIEtc

%——/

0. Administrator creates Proxy access and secret keys for a user in SEP by entering the real access and secret
keys and the S3-compatible object store endpoint. The Administrator distributes the Proxy access and secret keys
and the Proxy URL to the user.

1. The User sets the S3 client config endpoint to be the Proxy URL and access and secret config to be the Proxy
access and secret keys. For Spark, Users set Spark config to use the Proxy URL and Proxy access and secret
keys when submitting jobs or using Spark Connect. Whether via an S3 client or a Spark job, when an S3 object
request is made (for upload, get, etc.) it goes first to the AWS Proxy.

2. The AWS Proxy sends the Proxy access key and secret and the bucket/key to SEP BIAC. SEP identifies the
user and checks to see if the user has permission for the bucket/key. If possible, the bucket/key are translated into
a table. If they have permission, the request is allowed. If it's a meta-request (i.e. not an object get or put) the AWS
Proxy fulfills the request via the real object store. If the request is an object get/put, a pre-signed URL is returned to
the client.

3. The client uses the pre-signed URL (via the plugin/custom S3 client) to make a direct call to the object store to
access the real bucket/key.

